
Features
• Protocol

– CAN Used as Physical Layer

– 7 ISP CAN Identifiers

– Relocatable ISP CAN Identifiers

– Autobaud

• In-System Programming

– Read/Write Flash and EEPROM Memories

– Read Device ID

– Full-chip Erase

– Read/Write Configuration Bytes

– Security Setting From ISP Command

– Remote Application Start Command

• In-Application Programming/Self Programming

– Read/Write Flash and EEPROM Memories

– Read Device ID

– Block Erase

– Read/Write Configuration Bytes

– Bootloader Start

Description

This document describes the CAN bootloader functionalities as well as the CAN proto-

col to efficiently perform operations on the on-chip Flash (EEPROM) memories.

Addit ional information on the AT89C51CC03 product can be found in the

AT89C51CC03 datasheet and the AT89C51CC03 errata sheet available on the Atmel

web site.

The bootloader software package (source code and binary) currently used for produc-

tion is available from the Atmel web site.

Bootloader Revision Purpose of Modifications Date

Revisions 1.0.0 First release 01/08/2003

Revisions 1.0.1 SBV > 0x7F00 bug fix

(no doc and specification change)

15/04/2004

Revision 1.0.4 Improvement of Autobaud detection. 04/01/2006

4251B–CAN–03/08

CAN
Microcontrollers

AT89C51CC03

CAN Bootloader

 2

4251B–CAN–03/08

AT89C51CC03 CAN Bootloader

Functional

Description

The AT89C51CC03 Bootloader facilitates In-System Programming and In-Application

Programming.

In-System
Programming
Capability

In-System Programming allows the user to program or reprogram a microcontroller on-chip

Flash memory without removing it from the system and without the need of a pre-programmed

application.

The CAN bootloader can manage a communication with a host through the CAN network. It can

also access and perform requested operations on the on-chip Flash Memory.

In-Application
Programming or
Self Programming
Capability

In-Application Programming (IAP) allows the reprogramming of a microcontroller on-chip Flash

memory without removing it from the system and while the embedded application is running.

The CAN bootloader contains some Application Programming Interface routines named API rou-

tines allowing IAP by using the user’s firmware.

Block Diagram This section describes the different parts of the bootloader. The figure below shows the on-chip

bootloader and IAP processes.

Figure 1. Bootloader Process Description

ISP Communication
Management

User

Application
CAN Protocol

Communication

Management

Flash
Memory

External host via the

Flash Memory

IAP

Management

User Call

On Chip

 3

4251B–CAN–03/08

 AT89C51CC03 CAN Bootloader

ISP Communication

Management

The purpose of this process is to manage the communication and its protocol between the on-

chip bootloader and an external device (host). The on-chip bootloader implements a CAN proto-

col (see Section “Protocol”). This process translates serial communication frames (CAN) into

Flash memory accesses (read, write, erase...).

User Call Management Several Application Program Interface (API) calls are available to the application program to

selectively erase and program Flash pages. All calls are made through a common interface (API

calls) included in the bootloader. The purpose of this process is to translate the application

request into internal Flash Memory operations.

Flash Memory

Management

This process manages low level accesses to the Flash memory (performs read and write

accesses).

Bootloader Configuration

Configuration and

Manufacturer

Information

The table below lists Configuration and Manufacturer byte information used by the bootloader.

This information can be accessed through a set of API or ISP commands.

Mnemonic Description Default Value

BSB Boot Status Byte FFh

SBV Software Boot Vector FCh

SSB Software Security Byte FFh

EB Extra Byte FFh

CANBT1 CAN Bit Timing 1 FFh

CANBT2 CAN Bit Timing 2 FFh

CANBT3 CAN Bit Timing 3 FFh

NNB Node Number Byte FFh

CRIS CAN Re-locatable Identifier Segment FFh

Manufacturer 58h

Id1: Family code D7h

Id2: Product Name FFh

Id3: Product Revision FEh

 4

4251B–CAN–03/08

AT89C51CC03 CAN Bootloader

Mapping and Default

Value of Hardware

Security Byte

The 4 MSB of the Hardware Byte can be read/written by software (this area is called Fuse bits).

The 4 LSB can only be read by software and written by hardware in parallel mode (with parallel

programmer devices).

Note: U: Unprogram = 1
P: Program = 0

Security The bootloader has Software Security Byte (SSB) to protect itself from user access or ISP

access.

The Software Security Byte (SSB) protects from ISP accesses. The command "Program Soft-

ware Security Bit" can only write a higher priority level. There are three levels of security:

• Level 0: NO_SECURITY (FFh)
This is the default level.
From level 0, one can write level 1 or level 2.

• Level 1: WRITE_SECURITY (FEh)
In this level it is impossible to write in the Flash memory, BSB and SBV.
The Bootloader returns ID_ERROR message.
From level 1, one can write only level 2.

• Level 2: RD_WR_SECURITY (FCh)
Level 2 forbids all read and write accesses to/from the Flash memory.
The Bootloader returns ID_ERROR message.

Only a full chip erase command can reset the software security bits.

Bit Position Mnemonic Default Value Description

7 X2B U To start in x1 mode

6 BLJB P To map the boot area in code area between F800h-FFFFh

5 reserved U

4 reserved U

3 reserved U

2 LB2 P

To lock the chip (see datasheet)1 LB1 U

0 LB0 U

Level 0 Level 1 Level 2

Flash/EEPROM Any access allowed Read only access allowed All access not allowed

Fuse bit Any access allowed Read only access allowed All access not allowed

BSB & SBV & EB Any access allowed Read only access allowed All access not allowed

SSB Any access allowed Write level2 allowed Read only access allowed

Manufacturer info Read only access allowed Read only access allowed All access not allowed

Bootloader info Read only access allowed Read only access allowed All access not allowed

Erase block Allowed Not allowed Not allowed

Full chip erase Allowed Allowed Allowed

Blank Check Allowed Allowed Allowed

 5

4251B–CAN–03/08

 AT89C51CC03 CAN Bootloader

Software Boot
Vector

The Software Boot Vector (SBV) forces the execution of a user bootloader starting at address

[SBV]00h in the application area (FM0).

The way to start this user bootloader is described in Section “Boot Process”.

FLIP Software
Program

FLIP is a PC software program running under Windows 9x / NT / 2K / XP and LINUX that sup-

ports all Atmel Flash microcontroller and CAN protocol communication media.

Several CAN dongles are supported by FLIP (for Windows).

This free software program is available from the Atmel web site.

CAN Bootloader

Application

User Bootloader

[SBV]00h
FM1

FM0

 6

4251B–CAN–03/08

AT89C51CC03 CAN Bootloader

In-System

Programming

ISP allows the user to program or reprogram a microcontroller’s on-chip Flash memory through

the CAN network without removing it from the system and without the need of a pre-pro-

grammed application.

This section describes how to start the CAN bootloader and the higher level protocol over the

CAN.

Boot Process The bootloader can be activated in two ways:

• Hardware conditions

• Regular boot process

Hardware Conditions The Hardware conditions (EA = 1, PSEN = 0) during the RESET# falling edge force the on-chip

bootloader execution. In this way the bootloader can be carried out whatever the user Flash

memory content.

As PSEN is an output port in normal operating mode (running user application or bootloader

code) after reset, it is recommended to release PSEN after falling edge of reset signal. The hard-

ware conditions are sampled at reset signal falling edge, thus they can be released at any time

when reset input is low.

 7

4251B–CAN–03/08

 AT89C51CC03 CAN Bootloader

Regular Boot Process

RESET

BLJB = 1

Hardware
Condition

Start Bootloader

FCO N = 00h

SBV < F8h

Start User BootloaderStart Application

Yes

No

Yes

Yes

No

No

H
a

rd
w

a
re

B
o

o
t

P
ro

c
e

s
s

S
o

ft
w

a
re

 B
o

o
t

P
ro

c
e

s
s

bit ENBOO T in AUXR1 Register is
initia lized with BLJB inverted

ENBOO T = 1
PC = F800h
FCO N = 0Fh

ENBO OT = 0
PC = 0000h

ENBOOT = 1
PC = F800h
FCON = 00hYes

No

 8

4251B–CAN–03/08

AT89C51CC03 CAN Bootloader

Physical Layer The CAN is used to transmit information has the following configuration:

• Standard Frame CAN format 2.0A (identifier 11-bit)

• Frame: Data Frame

• Baud rate: autobaud is performed by the bootloader

CAN Controller

Initialization

Two ways are possible to initialize the CAN controller:

• Use the software autobaud

• Use the user configuration stored in the CANBT1, CANBT2 and CANBT3

The selection between these two solutions is made with EB:

• EB = FFh: the autobaud is performed.

• EB not equal to FFh: the CANBT1:2:3 are used.

CANBT1:3 and EB can be modified by user through a set of API or with ISP commands.

The figure below describes the CAN controller flow.

Figure 2. CAN Controller Initialization

CAN controller
Initialization

EB = FFh

Read CANBT1 value
Read CANBT2 value
Read CANBT3 value

CANBTx = FFh
x=(1,3)

CAN Error

CAN macro
Initialized

Yes

No

No

No

Yes

Yes

Configure the CAN
controller

Autobaud ok

Set the CAN controller in
autobaud mode

Yes

No

 9

4251B–CAN–03/08

 AT89C51CC03 CAN Bootloader

CAN Autobaud The table below shows the autobaud performance for a point to point connection in X1 mode.

Note: ‘–’ indicates an impossible configuration.

CAN Autobaud

Limitation

The CAN autobaud implemented in the bootloader is efficient only in point-to-point connection.

Because in a point to point connection, the transmit CAN message is repeated until a hardware

acknowledge is done by the receiver.

The bootloader can acknowledge an in-coming CAN frame only if a configuration is found.

This functionality is not guaranteed on a network with several CAN nodes.

8 MHz

11.059

MHz 12 MHz 16 MHz 20 MHz

22.1184

MHz 24 MHz 25 MHz 32 MHz 40 MHz

20 k

100 k

125 k –

250 k –

500 k

1 M – – –

 10

4251B–CAN–03/08

AT89C51CC03 CAN Bootloader

Protocol

Generic CAN Frame

Description

• Identifier:
Identifier identifies the frame (or message). Only the standard mode (11-bit) is used.

• Control:
Control contains the DLC information (number of data in Data field) 4-bit.

• Data:
Data field consists of zero to eight bytes. The interpretation within the frame depends on the

Identifier field.

The CAN protocol manages directly using hardware a checksum and an acknowledge.

Note: To describe the ISP CAN Protocol, we use Symbolic name for Identifier, but default values are

given.

Command Description This protocol allows to:

• Initiate the communication

• Program the Flash or EEPROM Data

• Read the Flash or EEPROM Data

• Program Configuration Information

• Read Configuration and Manufacturer Information

• Erase the Flash

• Start the application

Overview of the protocol is detailed in APPENDIX-1.

Several CAN message identifiers are defined to manage this protocol.

It is possible to allocate a new value for CAN ISP identifiers by writing the byte CRIS with the

base value for the group of identifier.

The maximum value for CRIS is 7Fh and the default CRIS value is 00h.

Identifier Control Data
11-bit 1 byte 8 bytes max

Identifier Command Effect Value

ID_SELECT_NODE Open/Close a communication with a node [CRIS]0h

ID_PROG_START Start a Flash/EEPROM programming [CRIS]1h

ID_PROG_DATA Data for Flash/EEPROM programming [CRIS]2h

ID_DISPLAY_DATA Display data [CRIS]3h

ID_WRITE_COMMAND Write in XAF, or Hardware Byte [CRIS]4h

ID_READ_COMMAND Read from XAF or Hardware Byte and special data [CRIS]5h

ID_ERROR Error message from bootloader only [CRIS]6h

 11

4251B–CAN–03/08

 AT89C51CC03 CAN Bootloader

Figure 3. Identifier Remapping

Communication

Initialization

The communication with a device (CAN node) must be opened prior to initiate any ISP

communication.

To open communication with the device, the Host sends a “connecting” CAN message

(Id_select_node) with the node number (NNB) passed in parameter.

If the node number passed is equal to FFh then the CAN bootloader accepts the communication

(Figure 4).

Otherwise the node number passed in parameter must be equal to the local Node Number (Fig-

ure 5).

Figure 4. First Connection

Figure 5. On Network Connection

Before opening a new communication with another device, the current device communication

must be closed with its connecting CAN message (Id_select_node).

CAN Identifiers

000h

7FFh

ID_error
ID_read_command
ID_write_command
ID_display_data
ID_prog_data
ID_prog_start
ID_select_node

CAN ISP identifiers

Group of 7CAN messages
Used to manage CAN ISP

[CRIS]0h

Host

Interface board between PC
and CAN network

Node 1

NNB = FFh (default value)

Host

Interface board between PC
and CAN network

Node 0

Node 3

Node 1

Node n

NNB = 00h

NNB = 01h

NNB = 03h NNB = n

 12

4251B–CAN–03/08

AT89C51CC03 CAN Bootloader

Request From Host

Note: num_node is the NNB (Node Number Byte) to which the Host wants to talk to.T

Answers From

Bootloader

Note: data[0] contains the bootloader version.

If the communication is closed then all the others messages won’t be managed by bootloader.

Flow Description

Example

Identifier Length data[0]

ID_SELECT_NODE 1 num_node

Identifier Length data[0] data[1] Comment

ID_SELECT_NODE 2 boot_version
00h Communication close

01h Communication open

Host Bootloader

Id_select_node message

Wait Select Node

Send Bootloader Version

Read Bootloader Version

Send Select Node message

Time-out 10 ms

Wait Select Node

OR

COMMAND ABORTED

COMMAND FINISHED
COMMAND FINISHED

with node number in parameter

Id_select_node message

node select = FFh

node select =
local node number

state com = com open

State com = com open

State com = com closed

and state of communication

HOST Id_select_node

BOOTLOADER Id_select_node

identifier length data

01 FF

02 01 01

 13

4251B–CAN–03/08

 AT89C51CC03 CAN Bootloader

Programming the

Flash or EEPROM

Data

The flow described below shows how to program data in the Flash memory or in the EEPROM

data memory. This operation can be executed only with a device previously opened in

communication.

1. The first step is to indicate which memory area (Flash or EEPROM data) is selected and

the range address to program.

2. The second step is to transmit the data.

The bootloader programs on a page of 128 bytes basis when it is possible.

The host must take care that:

• The data to program transmitted within a CAN frame are in the same page.

• To transmit 8 data bytes in CAN message when it is possible

3. To start the programming operation, the Host sends a “start programming” CAN message

(Id_prog_start) with the area memory selected in data[0], the start address and the end

address passed in parameter.

Requests From Host

Note: 1. Data[0] chooses the area to program:
- 00h: Flash
- 01h: EEPROM data

2. Address_start gives the start address of the programming command.

3. Address_end gives the last address of the programming command.

Answers From

Bootloader

The device has two possible answers:

• If the chip is protected from program access an “Error” CAN message is sent (see

Section “Error Message Description”).

• Otherwise an acknowledge is sent.

The second step of the programming operation is to send data to program.

Request From Host To send data to program, the Host sends a “programming data“ CAN message (Id_prog_data)

with up to 8 data by message and must wait for the answer of the device before sending the next

data to program.

Answers From

Bootloader

The device has two possible answers:

• If the device is ready to receive new data, it sends a “programming data” CAN message

(Id_prog_data) with the result Command_new passed in parameter.

Identifier Length data[0] data[1] data[2] data[3] data[4]

ID_PROG_START 5
00h

address_start address_end
01h

Identifier Length

ID_PROG_START 0

Identifier Length data[0] ... data[7]

ID_PROG_DATA up to 8 x ... x

 14

4251B–CAN–03/08

AT89C51CC03 CAN Bootloader

• If the device has finished the programming, it sends a “programming data” CAN message

(Id_prog_data) with the result Command_ok passed in parameter.

Flow Description

Identifier Length data[0] Description

ID_PROG_DATA 1

00h Command ok

01h Command fail

02h Command new data

Host Bootloader

Id_prog_start message

Id_error message

Id_prog_data message

Id_prog_data message

Column Latch Full

All bytes received

Wait Prog start

SSB = Level 0

Send COMMAND_OK

Wait Data prog

Wait Programming

All bytes received

Send ERROR

Send COMMAND_NEW_DATA

Id_prog_data message

Send prog_start message
with addresses

Wait ERROR

Send prog_data message
with 8 datas

Wait COMMAND_N

Wait COMMAND_OK

Wait ProgStart

OR

OR

COMMAND ABORTED

COMMAND FINISHED COMMAND FINISHED

Send ProgStart
Id_prog_start message

 15

4251B–CAN–03/08

 AT89C51CC03 CAN Bootloader

Example

Reading the Flash or

EEPROM Data

The flow described below allows the user to read data in the Flash memory or in the EEPROM

data memory. A blank check command on the Flash memory is possible with this flow.

This operation can be executed only with a device previously opened in communication.

To start the reading operation, the Host sends a “Display Data” CAN message (Id_display_data)

with the area memory selected, the start address and the end address passed in parameter.

The device splits into block of 8 bytes data to transfer to the Host if the number of data to display

is greater than 8 data bytes.

Requests from Host

Note: 1. Data[0] selects the area to read and the operation
- 00h: Display Flash
- 01h: Blank Check on the Flash
- 02h: Display EEPROM data

2. The address_start gives the start address to read.

3. The address_end gives the last address to read.

Answers from

Bootloader

The device has two possible answers:

• If the chip is protected from read access a “Error” CAN message is sent (see Section “Error

Message Description”).

• Otherwise:
for a display command the device start to send the data up to 8 by frame to the host. for a

blank check command the device send a result ok or the first address not erased.

Answer to a read command:

HOST Id_prog_start

BOOTLOADER

 Id_prog_data

Programming Data (write 55h from 0000h to 0008h in the flash)

identifier control

05 00

08 55

00

55

00

55

data

55 55 55 55

00

55HOST

 Id_prog_data 01 02

BOOTLOADER

 Id_prog_data 01 55HOST

 Id_prog_data 01 00

HOST Id_prog_start

Programming Data (write 55h from 0000h to 0008h in the flash), with SSB in write security

identifier control

04 00 00 00

data

08
BOOTLOADER Id_error 01 00

// command_new_data

// command_ok

// error_security

BOOTLOADER Id_prog_start 00

08

Identifier Length data[0] data[1] data[2] data[3] data[4]

ID_DISPLAY_DATA 5

00h

address_start address_end01h

02h

Identifier Length data[n]

ID_DISPLAY_DATA n x

 16

4251B–CAN–03/08

AT89C51CC03 CAN Bootloader

Answer to a blank check command:

Flow Description

Identifier Length data[0] data[1] Description

ID_DISPLAY_DATA
0 - - Blank Check OK

2 address_start

Host Bootloader

Id_display_data message

Id_error message

Id_display_data message

Blank command

Wait Display Data

SSB = Level2

Send COMMAND_OK

Read Data

All data read

Send ERROR

Send DATA Read

Send display_data message
with addresses or blank check

Wait ERROR

Wait COMMAND_OK

Wait Data Display

OR

OR

COMMAND ABORTED

COMMAND FINISHED

nb max by frame

All data read

Verify memory

Blank Check

COMMAND FINISHED

Send COMMAND_KO

Id_display_data message

Id_display_data message

Wait COMMAND_KO

COMMAND FINISHED

OR

All data read

COMMAND FINISHED

 17

4251B–CAN–03/08

 AT89C51CC03 CAN Bootloader

Example

Programming

Configuration

Information

The flow described below allows the user to program Configuration Information regarding the

bootloader functionality.

This operation can be executed only with a device previously opened in communication.

The Configuration Information can be divided in two groups:

• Boot Process Configuration:
BSB
SBV
Fuse bits (BLJB and X2 bits) (see Section “Mapping and Default Value of Hardware Security

Byte”)

• CAN Protocol Configuration:
BTC_1, BTC_2, BTC_3
SSB
EB
NNB
CRIS

Note: The CAN protocol configuration bytes are taken into account only after the next reset.

To s ta r t the prog ramming ope ra t ion , t he Hos t sends a “wr i t e ” CAN message

(Id_write_command) with the area selected, the value passed in parameter.

Take care that the Program Fuse bit command programs the 4 Fuse bits at the same time.

HOST Id_display_data

BOOTLOADER Id_display_data

Display Data (from 0000h to 0008h)

identifier control

05 00

08 55

00

55

00

55

data

55 55 55 55

00

55

HOST Id_display_data

BOOTLOADER Id_display_data

Blank Check

identifier control

05 01

00

00 00

data

00

08

08

// Command ok

BOOTLOADER Id_display_data 01 55

 18

4251B–CAN–03/08

AT89C51CC03 CAN Bootloader

Requests From Host

Answers From

Bootloader

The device has two possible answers:

• If the chip is protected from program access a “Error” CAN message is sent (see

Section “Error Message Description”).

• Otherwise an acknowledge “Command ok“ is sent.

Flow Description

Identifier Length data[0] data[1] data[2] Description

ID_WRITE_COMMAND
3 01h

00h

value

write value in BSB

01h write value in SBV

05h write value in SSB

06h write value in EB

1Ch write value in BTC_1

1Dh write value in BTC_2

1Eh write value in BTC_3

1Fh write value in NNB

20h write value in CRIS

3 02h 00h value write value in Fuse bits

Identifier Length data[0] Description

ID_WRITE_COMMAND 1 00h Command ok

Host Bootloader

Id_write_com message

Id_error message

Wait Write_Command

NO_SECURITY

Send COMMAND_OK

Write Data

Send ERROR_SECURITY

Send Write_Command

Wait ERROR_SECURITY

Wait COMMAND_OK

OR

COMMAND ABORTED

COMMAND FINISHED

Id_write_com message

COMMAND FINISHED

 19

4251B–CAN–03/08

 AT89C51CC03 CAN Bootloader

Example

Reading Configuration

Information or

Manufacturer

Information

The flow described below allows the user to read the configuration or manufacturer information.

This operation can be executed only with a device previously opened in communication.

To start the reading operation, the Host sends a “Read command” CAN message

(Id_read_command) with the information selected passed in data field.

Requests From Host

00

HOST Id_write_command

BOOTLOADER Id_write_command

identifier control

03 01

01

00 88

data

// command_ok

00

HOST Id_write_command

BOOTLOADER Id_write_command

Write Fuse bit at Fxh

identifier control

02 02

01

F0

data

// command_ok

Write BSB at 88h

Identifier Length data[0] data[1] Description

ID_READ_COMMAND

2 00h

00h Read Bootloader version

01h Read Device ID1

02h Read Device ID2

2 01h

00h Read BSB

01h Read SBV

05h Read SSB

06h Read EB

1Ch Read BTC_1

1Dh Read BTC_2

1Eh Read BTC_3

1Fh Read NNB

20h Read CRIS

30h Read Manufacturer Code

31h Read Family Code

60h Read Product Name

61h Read Product Revision

2 02h 00h Read HSB (Fuse bits)

 20

4251B–CAN–03/08

AT89C51CC03 CAN Bootloader

Answers From

Bootloader

The device has two possible answers:

• If the chip is protected from read access an “Error” CAN message is sent (see Section “Error

Message Description”).

• Otherwise:
the device answers with a Read Answer CAN message (Id_read_command).

Flow Description

Example

Identifier Length data[n]

ID_READ_COMMAND 1 value

Host Bootloader

Id_read_com message

Id_error message

Wait Read_Com

Send Data read

Read Data

Send ERROR_SECURITY

Send read_com message

Wait ERROR_SECURITY

Wait Value of data

OR

COMMAND ABORTED

COMMAND FINISHED

Id_read_com message

COMMAND FINISHED

RD_WR_SECURITY

HOST Id_read_command

BOOTLOADER Id_read_command

Read Bootloader Version

identifier control

02 00

01

F5

00

data

HOST Id_read_command

BOOTLOADER Id_read_command

Read SBV

identifier control

02 01

01

01

data

// SBV = F5h

55 // Bootloader version 55h

F0

HOST Id_read_command

BOOTLOADER Id_read_command

Read Fuse bit

identifier control

01 02

01

data

// Fuse bit = F0h

 21

4251B–CAN–03/08

 AT89C51CC03 CAN Bootloader

Erasing the Flash The flow described below allows the user to erase the Flash memory.

This operation can be executed only with a device previously opened in communication.

Two modes of Flash erasing are possible:

• Full Chip erase

• Block erase

The Full Chip erase command erases the whole Flash (64 Kbytes) and sets some Configuration

Bytes at their default values:

• BSB = FFh

• SBV = FFh

• SSB = FFh (NO_SECURITY)

The Block erase command erases only a part of the Flash.

Three Blocks are defined in the AT89C51CC03:

• block0 (From 0000h to 1FFFh)

• block1 (From 2000h to 3FFFh)

• block2 (From 4000h to 7FFFh)

• block3 (From 8000h to BFFFh)

• block4 (From C000h to FFFFh)

•

To start the erasing operation, the Host sends a “write” CAN message (Id_write_command).

Requests From Host

Answers From

Bootloader

As the Program Configuration Information flows, the erase block command has two possible

answers:

• If the chip is protected from program access an “Error” CAN message is sent (see

Section “Error Message Description”).

• Otherwise an acknowledge is sent.

The full chip erase is always executed whatever the Software Security Byte value is.

On a full chip erase command an acknowledge “command ok” is sent.

Identifier Length data[0] data[1] Description

ID_WRITE_COMMAND 2 00h

00h Erase block0 (0k to 8k)

20h Erase block1 (8k to 16k)

40h Erase block2 (16k to 32k)

80h Erase block3 (32k to 48k)

C0h Erase block4 (48k to 64k)

FFh Full chip erase

Identifier Length data[0] Description

ID_WRITE_COMMAND 1 00h Command ok

 22

4251B–CAN–03/08

AT89C51CC03 CAN Bootloader

Example

Starting the

Application

The flow described below allows to start the application directly from the bootloader upon a spe-

cific command reception.

This operation can be executed only with a device previously opened in communication.

Two options are possible:

• Start the application with a reset pulse generation (using watchdog).
When the device receives this command the watchdog is enabled and the bootloader enters

a waiting loop until the watchdog resets the device.
Take care that if an external reset chip is used the reset pulse in output may be wrong and in

this case the reset sequence is not correctly executed.

• Start the application without reset
A jump at the address 0000h is used to start the application without reset.

To start the application, the Host sends a “start application” CAN message (Id_write_command)

with the corresponding option passed in parameter.

Requests From Host

Answer From

Bootloader

No answer is returned by the device.

Example

Error Message

Description

The error message is implemented to report when an action required is not possible.

• At the moment only the security error is implemented and only the device can answer this

kind of CAN message (Id_error).

HOST Id_write_command

BOOTLOADER Id_write_command

Full Chip Erase

identifier control

02 00

01

FF

data

00 // command_ok

Identifier Length data[0] data[1] data[2] data[3] Description

ID_WRITE_COMMAND

2

03h

00h - -
Start Application with a reset pulse

generation

4 01h address
Start Application with a jump at

“address”

HOST Id_write_command

BOOTLOADER

Start application

identifier control

04 03 01 00 00

data

No answer

Identifier Length data[0] Description

ID_ERROR 1 00h Software Security Error

 23

4251B–CAN–03/08

 AT89C51CC03 CAN Bootloader

In-Application

Programming/S

elf

Programming

The IAP allows to reprogram a microcontroller on-chip Flash memory without removing it from

the system and while the embedded application is running.

The user application can call Application Programming Interface (API) routines allowing IAP.

These API are executed by the bootloader.

To call the corresponding API, the user must use a set of Flash_api routines which can be linked

with the application.

Example of Flash_api routines are available on the Atmel web site on the software package:

C Flash Drivers for the AT89C51CC03CA for Keil Compilers

The flash_api routines on the package work only with the CAN bootloader.

The flash_api routines are listed in APPENDIX-2.

API Call

Process The application selects an API by setting the 4 variables available when the flash_api library is

linked to the application.

These four variables are located in RAM at fixed address:

• api_command: 1Ch

• api_value: 1Dh

• api_dph: 1Eh

• api_dpl: 1Fh

All calls are made through a common interface “USER_CALL” at the address FFC0h.

The jump at the USER_CALL must be done by LCALL instruction to be able to comeback in the

application.

Before jump at the USER_CALL, the bit ENBOOT in AUXR1 register must be set.

Constraints The interrupts are not disabled by the bootloader.

Interrupts must be disabled by user prior to jump to the USER_CALL, then re-enabled when

returning.

Interrupts must also be disabled before accessing EEPROM Data then re-enabled after.

The user must take care of hardware watchdog before launching a Flash operation.

For more information regarding the Flash writing time see the AT89C51CC03 datasheet.

 24

4251B–CAN–03/08

AT89C51CC03 CAN Bootloader

API Commands Several types of APIs are available:

• Read/Program Flash and EEPROM Data memory

• Read Configuration and Manufacturer Information

• Program Configuration Information

• Erase Flash

• Start bootloader

Read/Program Flash

and EEPROM Data

Memory

All routines to access EEPROM Data are managed directly from the application without using

bootloader resources.

To read the Flash memory the bootloader is not involved.

For more details on these routines see the AT89C51CC03 Datasheet sections “Program/Code

Memory” and “EEPROM Data Memory”

Two routines are available to program the Flash:

– __api_wr_code_byte

– __api_wr_code_page

• The application program load the column latches of the Flash then call the

__api_wr_code_byte or __api_wr_code_page see datasheet in section “Program/Code

Memory”.

• Parameter settings

• instruction: LCALL FFC0h.

Note: No special resources are used by the bootloader during this operation

Read Configuration

and Manufacturer

Information

• Parameter settings

API Name api_command api_dph api_dpl api_value

__api_wr_code_byte

__api_wr_code_page
0Dh - - -

API Name api_command api_dph api_dpl api_value

__api_rd_HSB 08h - 00h return HSB

__api_rd_BSB 05h - 00h return BSB

__api_rd_SBV 05h - 01h return SBV

__api_rd_SSB 05h - 05h return SSB

__api_rd_EB 05h - 06h return EB

__api_rd_CANBTC1 05h - 1Ch return CANBTC1

__api_rd_CANBTC2 05h - 1Dh return CANBTC2

__api_rd_CANBTC3 05h - 1Eh return CANBTC3

__api_rd_NNB 05h - 1Fh return NNB

__api_rd_CRIS 05h - 20h return CRIS

__api_rd_manufacturer 05h - 30h
return

manufacturer id

__api_rd_device_id1 05h - 31h return id1

 25

4251B–CAN–03/08

 AT89C51CC03 CAN Bootloader

• Instruction: LCALL FFC0h.

• At the complete API execution by the bootloader, the value to read is in the api_value

variable.

Note: No special resources are used by the bootloader during this operation

Program

Configuration

Information

• Parameter settings

• instruction: LCALL FFC0h.

Note: 1. See in the AT89C51CC03 datasheet the time that a write operation takes.

2. No special resources are used by the bootloader during these operations

Erasing the Flash The AT89C51CC03 Flash memory is divided in several blocks:

Block 0: from address 0000h to 1FFFh

Block 1: from address 2000h to 3FFFh

Block 2: from address 4000h to 7FFFh

Block 3: from address 8000h to BFFFh

Block 4: from address C000h to FFFFh

These five blocks contain 256 pages.

__api_rd_device_id2 05h - 60h return id2

__api_rd_device_id3 05h - 61h return id3

__api_rd_bootloader_version 0Eh - 00h return value

API Name api_command api_dph api_dpl api_value

API Name api_command api_dph api_dpl api_value

__api_clr_BLJB 07h - -
(HSB & BFh) |

40h

__api_set_BLJB 07h - - HSB & BFh

__api_clr_X2 07h - -
(HSB & 7Fh) |

80h

__api_set_X2 07h - - HSB & 7Fh

__api_wr_BSB 04h - 00h value to write

__api_wr_SBV 04h - 01h value to write

__api_wr_SSB 04h - 05h value to write

__api_wr_EB 04h - 06h value to write

__api_wr_CANBTC1 04h - 1Ch value to write

__api_wr_CANBTC2 04h - 1Dh value to write

__api_wr_CANBTC3 04h - 1Eh value to write

__api_wr_NNB 04h - 1Fh value to write

__api_wr_CRIS 04h - 20h value to write

 26

4251B–CAN–03/08

AT89C51CC03 CAN Bootloader

• Parameter settings

• instruction: LCALL FFC0h.

Note: 1. See the AT89C51CC03 datasheet for the time that a write operation takes and this time must

multiply by the number of pages.

2. No special resources are used by the bootloader during these operations

Starting the

Bootloader

There are two start bootloader routines possible:

This routine allows to start at the beginning of the bootloader as after a reset. After calling this

routine the regular boot process is performed and the communication must be opened before

any action.

• No special parameter setting

• Set bit ENBOOT in AUXR1 register

• instruction: LJUMP or LCALL at address F800h

This routine allows to start the bootloader with the CAN bit configuration of the application and

start with the state "communication open". That means the bootloader will return the message

“id_select_node” with the field com port open.

• No special parameter setting

• Set bit ENBOOT in AUXR1 register

• instruction: LJUMP or LCALL at address FF00h

API Name api_command api_dph api_dpl api_value

__api_erase_block0 00h 00h - -

__api_erase_block1 00h 20h -

__api_erase_block2 00h 40h -

__api_erase_block3 00h 80h - -

__api_erase_block4 00h C0h -

 27

4251B–CAN–03/08

 AT89C51CC03 CAN Bootloader

Appendix-1
Table 1. Summary of Frames from Host

Identifier length data[0] data[1] data[2] data[3] data[4] Description

Id_select_node

(CRIS:0h)
1 num node - - - - Open / Close communication

Id_prog_start

(CRIS:1h)
5

00h
start_address end_address

Init Flash programming

01h Init EEPROM programming

Id_prog_data

(CRIS:2h)
n data[0:8] Data to program

Id_display_data

(CRIS:3h)
5

00h

start_address end_address

Display Flash Data

01h Blank Check in Flash

02h Display EEPROM Data

Id_write_command

(CRIS:4h)

2 00h

00h - - - Erase block0 (0k to 8k)

20h - - - Erase block1 (8k to 16k)

40h - - - Erase block2 (16k to 32k)

80h - - - Erase block3 (32k to 48k)

C0h - - - Erase block4 (48k to64k)

FFh - - - Full chip Erase

3 01h

00h

value

- - Write value in BSB

01h - - Write value in SBV

05h - - Write value in SSB

06h - - Write value in EB

1Ch - - Write BTC_1

1Dh - - Write BTC_2

1Eh - - Write BTC_3

1Fh - - Write NNB

20h - - Write CRIS

3 02h 00h value - - Write value in Fuse (HWB)

2
03h

00h - - -
Start Application with Hardware

Reset

4 01h address - Start Application by LJMP address

 28

4251B–CAN–03/08

AT89C51CC03 CAN Bootloader

Id_read_command

(CRIS:5h)

2 00h

00h - - - Read Bootloader Version

01h - - - Read Device ID1

02h - - - Read Device ID2

2 01h

00h - - - Read BSB

01h - - - Read SBV

05h - - - Read SSB

06h - - - Read EB

30h - - - Read Manufacturer Code

31h - - - Read Family Code

60h - - - Read Product Name

61h - - - Read Product Revision

1Ch - - - Read BTC_1

1Dh - - - Read BTC_2

1Eh - - - Read BTC_3

1Fh - - - Read NNB

20h - - - Read CRIS

2 02h 00h - - - Read HSB

Table 1. Summary of Frames from Host (Continued)

Identifier length data[0] data[1] data[2] data[3] data[4] Description

Table 2. Summary of Frames from Target (Bootloader)

Identifier length data[0] data[1] data[2] data[3] data[4] Description

Id_select_node

(CRIS:0h)
2

Boot

version

00h - - - communication close

01h - - - communication open

Id_prog_start

(CIRS:1h)
0 - - - - - Command ok

Id_prog_data

(CRIS:2h)
1

00h - - - - Command ok

01h - - - - Command fail

02h - - - - Command New Data

Id_display_data

(CRIS:3h)

n n data (n = 0 to 8) Data read

0 - - - - - Blank Check ok

2 first address not blank - - - Blank Check fail

Id_write_command

(CIRS:4h)
1 00h - - - - Command ok

Id_read_command

(CRIS:5h)
1 Value - - - Read Value

 29

4251B–CAN–03/08

 AT89C51CC03 CAN Bootloader

Id_error

(CRIS:6h)
1 00h - - - - Software Security Error

Table 2. Summary of Frames from Target (Bootloader) (Continued)

Identifier length data[0] data[1] data[2] data[3] data[4] Description

 30

4251B–CAN–03/08

AT89C51CC03 CAN Bootloader

Appendix-2
Table 3. API Summary

Function Name

Bootloader

Execution api_command api_dph api_dpl api_value

__api_rd_code_byte no

__api_wr_code_byte yes 0Dh - - -

__api_wr_code_page yes 0Dh - - -

__api_erase block0 yes 00h 00h - -

__api_erase block1 yes 00h 20h - -

__api_erase block2 yes 00h 40h - -

__api_erase block3 yes 00h 80h - -

__api_erase block4 yes 00h C0h - -

__api_rd_HSB yes 08h - 00h return value

__api_clr_BLJB yes 07h - - (HSB & BFh) | 40h

__api_set_BLJB yes 07h - - HSB & BFh

__api_clr_X2 yes 07h - - (HSB & 7Fh) | 80h

__api_set_X2 yes 07h - - HSB & 7Fh

__api_rd_BSB yes 05h - 00h return value

__api_wr_BSB yes 04h - 00h value

__api_rd_SBV yes 05h - 01h return value

__api_wr_SBV yes 04h - 01h value

__api_erase_SBV yes 04h - 01h FFh

__api_rd_SSB yes 05h - 05h return value

__api_wr_SSB yes 04h - 05h value

__api_rd_EB yes 05h - 06h return value

__api_wr_EB yes 04h - 06h value

__api_rd_CANBTC1 yes 05h - 1Ch return value

__api_wr_CANBTC1 yes 04h - 1Ch value

__api_rd_CANBTC2 yes 05h - 1Dh return value

__api_wr_CANBTC2 yes 04h - 1Dh value

__api_rd_CANBTC3 yes 05h - 1Eh return value

__api_wr_CANBTC3 yes 04h - 1Eh value

__api_rd_NNB yes 05h - 1Fh return value

__api_wr_NNB yes 04h - 1Fh value

__api_rd_CRIS yes 05h - 20h return value

__api_wr_CRIS yes 04h - 20h value

 31

4251B–CAN–03/08

 AT89C51CC03 CAN Bootloader

__api_rd_manufacturer yes 05h - 30h return value

__api_rd_device_id1 yes 05h - 31h return value

__api_rd_device_id2 yes 05h - 60h return value

__api_rd_device_id3 yes 05h - 61h return value

__api_rd_bootloader_version yes 0Eh - 00h return value

__api_eeprom_busy no - - - -

__api_rd_eeprom_byte no - - - -

__api_wr_eeprom_byte no - - - -

__api_start_bootloader no - - - -

__api_start_isp no - - - -

Table 3. API Summary

Function Name

Bootloader

Execution api_command api_dph api_dpl api_value

4251B–CAN–03/08

Headquarters International

Atmel Corporation

2325 Orchard Parkway

San Jose, CA 95131

USA

Tel: 1(408) 441-0311

Fax: 1(408) 487-2600

Atmel Asia

Room 1219

Chinachem Golden Plaza

77 Mody Road Tsimshatsui

East Kowloon

Hong Kong

Tel: (852) 2721-9778

Fax: (852) 2722-1369

Atmel Europe

Le Krebs

8, Rue Jean-Pierre Timbaud

BP 309

78054 Saint-Quentin-en-

Yvelines Cedex

France

Tel: (33) 1-30-60-70-00

Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg.

1-24-8 Shinkawa

Chuo-ku, Tokyo 104-0033

Japan

Tel: (81) 3-3523-3551

Fax: (81) 3-3523-7581

Product Contact

Web Site

www.atmel.com

Technical Support

Enter Product Line E-mail

Sales Contact

www.atmel.com/contacts

Literature Requests

www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of

Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

