

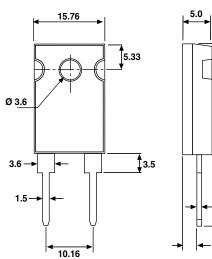
Power Resistor Thick Film Technology

LTO series are the extension of RTO types. We used the direct ceramic mounting design (no metal tab) of our RCH power resistors applied to semiconductor packages.

DIMENSIONS in millimeters

FEATURE

100 W at 25 °C case temperature heatsink mounted


- Direct mounting ceramic on heatsink
- Broad resistance range: R015 to 1M

20.7

14.5

0.6

- Non inductive
- TO-247 package: Compact and easy to mount
- RoHS compliant

MECHANICAL SPECIFICATIONS

Mechanical Protection Resistive Element Substrate Connections Weight Mounting Torqure Molded Thick film Alumina Tinned copper 3.5 g max. 1 Nm

DIMENSIONS

Standard Package

TO-247 isolated case

ENVIRONMENTAL SPECIFICATIONS

Temperature Range Climatic Category Flammability - 55 °C to + 175 °C 55/175/56 IEC 60695-11-5 2 applications 30 s separated by 60 s

→ 4 2.4					
ELECTRICAL SPECIFICATIONS					
Resistance Range	0.015 Ω to 1 M Ω				
Tolerances (Standard)	± 1 % to ± 10 %				
Dissipation and Associated	Onto a heatsink				
Power Rating and Thermal Resistance of the Component	100 W at + 25 °C (case temp.) R _{TH} (j - c): 1.5 °C/W Free air: 3.5 W at + 25 °C				
Temperature Coefficient	See Performance table				
Standard	± 150 ppm/°C				
Limiting Element Voltage UL	375 V				
Dielectric Strength MIL STD 202	1500 V _{RMS} - 1 min 10 mA max.				
Insulation Resistance	$\geq 10^4 \ M\Omega$				

Inductance

Critical Resistance

≤ 0.1 μH

1.41 kΩ

Vishay Sfernice

PERFORMANCE					
TESTS	CONDITIONS	REQUIREMENTS			
Momentary Overload	EN 60115-1 1.5 Pr/5 s <i>U</i> _S < 1.5 <i>U</i> _L	± (0.5 % + 0.005 Ω)			
Rapid Temperature Change	EN 60115-1 IEC 60068-2-14 Tests Na 5 cycles - 55 °C to + 175 °C	± (0.5 % + 0.005 Ω)			
Load Life	EN 60115-1 1000 h Pr at + 25 °C	± (1 % + 0.005 Ω)			
Humidity (Steady State)	MIL STD 202 Method 103 B Cond. D	± (0.5 % + 0.005 Ω)			
Vibration	MIL STD 202 Method 204 Cond. D	± (0.2 % + 0.005 Ω)			
Terminal Strength	MIL STD 202 ± (0.2 % + 0.005 Method 211 Cond. A1 ± (0.2 % + 0.005				
Shock	100G, MIL STD 202 Method 213 Cond. I	± (0.5 % + 0.005 Ω)			

SPECIAL FEATURES						
Resistance Values	≥ 0.010	≥ 0.5				
Tolerances	± 1 % at ± 10 %					
Typical Temperature Coefficient (- 55 ° to + 175 °C)	± 900 ppm/°C	± 700 ppm/°C	± 250 ppm/°C	± 150 ppm/°C		

CHOICE OF THE HEATSINK

The user must choose according to the working conditions of the component (power, room temperature). Maximum working temperature must not exceed 175 °C. The dissipated power is simply calculated by the following ratio:

$$\mathsf{P} = \frac{\Delta \mathsf{T}}{[\mathsf{R}_{\mathsf{TH}} (\mathsf{j}-\mathsf{c}) + \mathsf{R}_{\mathsf{TH}} (\mathsf{c}-\mathsf{a})]}^{(1)}$$

P: Expressed in W

 ΔT : Difference between maximum working temperature and room temperature

R_{TH} (j - c): Thermal resistance value measured between resistive layer and outer side of the resistor. It is the thermal resistance of the component.

R_{TH} (c - a): Thermal resistance value measured between outer side of the resistor and room temperature. It is the thermal resistance of the heatsink itself (type, shape) and the quality of the fastening device, and the thermal resistance of the thermal compound.

Example:

R_{TH} (c - a) for LTO 100 power rating 10 W at ambient temperature + 25 °C

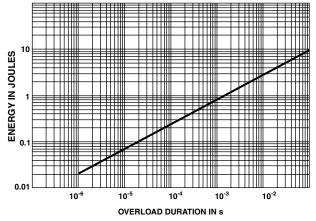
Thermal resistance R_{TH} (j - c): 1.5 °C/W

Considering equation (1) we have:

$$\begin{split} &\Delta T = 175 \ ^{\circ}C - 25 \ ^{\circ}C = 150 \ ^{\circ}C \\ &R_{TH} \left(j - c \right) + R_{TH} \left(c - a \right) = \frac{\Delta T}{P} = \frac{150}{10} = 15 \ ^{\circ}C/W \\ &R_{TH} \left(c - a \right) = 15 \ ^{\circ}C/W - 1.5 \ ^{\circ}C/W = 13.5 \ ^{\circ}C/W \end{split}$$

with a thermal grease R_{TH} (c - h) = 1 °C/W, we need a heatsink with R_{TH} (h - a) = 12.5 °C/W.

Power Resistor Thick Film Technology

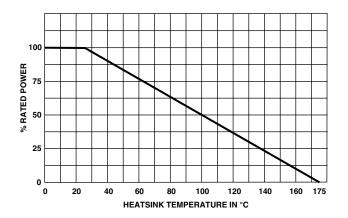

LTO 100 Vishay Sfernice

OVERLOADS

In any case the applied voltage must be lower than the maximum overload voltage of 560 V.

The values indicated on the graph below are applicable to resistors in air or mounted onto a heatsink.

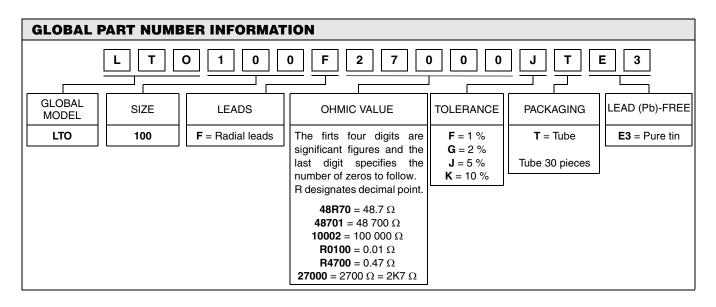
ENERGY CURVE


MARKING

Model, style, resistance value (in Ω), tolerance (in %), manufacturing date, VISHAY trademark.

POWER RATING CHART

The temperature of the case should be maintained within the limits specified.


To improve the thermal conductivity, surfaces in contact should be coated with a silicone grease and the torque applied on the screw for tightening should be around 1 Nm.

PACKAGING

Tube of 30 units

ORDERING INFORMATION							
LTO	100	F	2.7 k Ω	±1%	xxx	TU30	e3
MODEL	STYLE	CONNECTIONS	RESISTANCE VALUE	TOLERANCE	CUSTOM DESIGN	PACKAGING	LEAD (Pb)-FREE
				± 1 % ± 2 % ± 5 % ± 10 %	Optional on request: Special TCR, shape etc.		

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.