Features
* High-performance, Low-power Atmel AVR® 8-bit Microcontroller

¢ Advanced RISC Architecture ®
— 130 Powerful Instructions — Most Single Clock Cycle Execution A t m e L
— 32 x 8 General Purpose Working Registers + Peripheral Control Registers
— Fully Static Operation
— Up to 16 MIPS Throughput at 16 MHz
— On-chip 2-cycle Multiplier

¢ High Endurance Non-volatile Memory segments
— 64 Kbytes of In-System Reprogrammable Flash program memory

- 2 Kbytes EEPROM 8-bit Atmel

— 4 Kbytes Internal SRAM

— Write/Erase Cycles: 10,000 Flash/100,000 EEPROM i

— Data retention: 20 years at 85°C/100 years at 25°C(") M ICfOCOﬂtI‘Ol Ier

— Optional Boot Code Section with Independent Lock Bits H
In-System Programming by On-chip Boot Program Wlth 64K Bytes
True Read-While-Write Operation

— Up to 64 Kbytes Optional External Memory Space In'SyStem

— Programming Lock for Software Security

— SPI Interface for In-System Programming Prog ram mable

¢ JTAG (IEEE std. 1149.1 Compliant) Interface
— Boundary-scan Capabilities According to the JTAG Standard FIaSh

— Extensive On-chip Debug Support
— Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
* Peripheral Features
— Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes ATmega64
— Two Expanded 16-bit Timer/Counters with Separate Prescaler, Compare Mode, and
Capture Mode
— Real Time Counter with Separate Oscillator ATmega64L
— Two 8-bit PWM Channels
— 6 PWM Channels with Programmable Resolution from 1 to 16 Bits
— 8-channel, 10-bit ADC
8 Single-ended Channels
7 Differential Channels
2 Differential Channels with Programmable Gain (1x, 10x, 200x)
— Byte-oriented Two-wire Serial Interface
— Dual Programmable Serial USARTs
— Master/Slave SPI Serial Interface
— Programmable Watchdog Timer with On-chip Oscillator
— On-chip Analog Comparator
¢ Special Microcontroller Features
— Power-on Reset and Programmable Brown-out Detection
- Internal Calibrated RC Oscillator
— External and Internal Interrupt Sources
— Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby
and Extended Standby
— Software Selectable Clock Frequency
— ATmegai03 Compatibility Mode Selected by a Fuse
— Global Pull-up Disable
¢ |/O and Packages
— 53 Programmable I/O Lines
— 64-lead TQFP and 64-pad QFN/MLF
¢ Operating Voltages
— 2.7V - 5.5V for Atmel ATmega64L
— 4.5V - 5.5V for Atmel ATmega64
¢ Speed Grades
— 0 - 8 MHz for ATmega64L
— 0-16 MHz for ATmega64 2490R-AVR-02/2013

| /ltmeL

| ATmega64(L)

Pin
Configuration

Figure 1. Pinout ATmega64

TQFP/MLF
TOwOo =~
S283
—~ ~~EEEE
O AN M < 1B O© I~ —_ o~ —~
O OO0 00 00 o - A
alalalalalalyalya) NN
&) u_$$$$$$$$o <L
o -
SZERrYRPILe=z02% Y
< OC<<ooooooooa G >oaoon
mininininininisisisisisinEnlinln;
< OAN T~ O OO OO T OAN— OO
_— © © © © © IO 1O WO O W O O W WU LW <
PENC|1 o 48 [1 PA3 (AD3)
RXDO/(PDI) PEO [] 2 47 [0 PA4 (AD4)
(TXDO/PDO) PE1 [3 46 [1 PA5 (AD5)
(XCKO/AINO) PE2 [] 4 45 [0 PA6 (ADS6)
(OC3A/AIN1) PE3 [5 44 [PA7 (AD7)
(OC3B/INT4) PE4 [6 43 [0 PG2(ALE)
(OC3C/INT5) PE5 [] 7 42 [1 PC7 (A15)
(T3/INT6) PE6 [] 8 41 [0 PC6 (A14)
(ICP3/INT7) PE7] 9 40 [1 PC5 (A13)
(SS)PBO] 10 39 [1PC4 (A12)
(SCK) PB1] 11 38 [0 PC3 (A11)
(MOSI) PB2] 12 37 [O PC2 (A10
(MISO) PB3 [] 13 36 [1 PC1 (A9)
(OC0) PB4 [] 14 35 [PCO (A8)
(OC1A)PB5] 15 34 [0 PG1(RD)
(OC1B)PBG[16’\ 0 5 O D<o Do o — o33HPGWR)
T AN AN AN AN AN AN ANANANANOOOO™
OO0 oOoOodg
Eool32I8583a380
&&&mgéggaama&aam
o8 gle XX Soramrecer,a
- EFEEEEQLYXEE
Oy zZ2z2Z2Z200 ——
elciye Sx::"%
S 332K
e} a5 o

Note: The bottom pad under the QFN/MLF package should be soldered to ground.

Disclaimer Typical values contained in this data sheet are based on simulations and characterization of
other AVR microcontrollers manufactured on the same process technology. Min and Max values
will be available after the device is characterized.

| /ltmeL 2

2490R-AVR-02/2013

| ATmega64(L)

Overview

The ATmega64 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing
powerful instructions in a single clock cycle, the ATmega64 achieves throughputs approaching 1 MIPS per MHz, allowing
the system designer to optimize power consumption versus processing speed.

Block Diagram

Figure 2. Block Diagram

PFO - PF7 PAQ - PA7 PCO - PC7

= e T AT

PORTF DRIVERS PORTA DRIVERS PORTC DRIVERS

— |
Wit WTTTTT
§ o I o O G REéT’EBE‘m [&m}% m
: i i i 8-BIT DATA BUS >

i
i

: |

' ! XTAL1 'L“'
AREF | CALIB.OSC 1 ;

3 e ;

! | XTAL2

' 1

! 1

' 1

]

¢ i <| OSCILLATOR {HII
PROGRAM - - STACK WATCHDOG
JTAGTAP | »| COUNTER |‘ ‘ | POINTER [€ TIMER
! OSCILLATOR

¢ | i
'
.
PROGRAM] SRAM MCU CONTROL > TIMING AND
ON-CHIP DEBUG "| FLASH | REGISTER 3] CONTROL
!
'
'
BOUNDARY- '
SCAN

PROGRAMMING
LOGIC

I

i
T | RESET
i

TIMER/ >
COUNTERS =

INSTRUCTION
REGISTER

GENERAL

PURPOSE

1
]
I REGISTERS
i
B3 X »
INSTRUCTION :4— v INTERRUPT
DECODER - 7 UNIT

T T T

CONTROL

STATUS
REGISTER

¥
USARTO SPI 2-WIRE SERIAL
-I__’_;:| | USARTT | | INTERFACE

v

r

i s i s s
i i

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly
connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction
executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times
faster than conventional CISC microcontrollers.

| /ltmeL 3

2490R-AVR-02/2013

| ATmega64(L)

ATmegal03 and
ATmega64
Compatibility

The ATmega64 provides the following features: 64 Kbytes of In-System Programmable Flash
with Read-While-Write capabilities, 2 Kbytes EEPROM, 4 Kbytes SRAM, 53 general purpose I/O
lines, 32 general purpose working registers, Real Time Counter (RTC), four flexible Timer/Coun-
ters with compare modes and PWM, two USARTSs, a byte oriented Two-wire Serial Interface, an
8-channel, 10-bit ADC with optional differential input stage with programmable gain, program-
mable Watchdog Timer with internal Oscillator, an SPI serial port, IEEE std. 1149.1 compliant
JTAG test interface, also used for accessing the On-chip Debug system and programming, and
six software selectable power saving modes. The Idle mode stops the CPU while allowing the
SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down
mode saves the register contents but freezes the Oscillator, disabling all other chip functions
until the next interrupt or Hardware Reset. In Power-save mode, the asynchronous timer contin-
ues to run, allowing the user to maintain a timer base while the rest of the device is sleeping.
The ADC Noise Reduction mode stops the CPU and all /O modules except asynchronous timer
and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crys-
tal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast
start-up combined with low power consumption. In Extended Standby mode, both the main
Oscillator and the asynchronous timer continue to run.

The device is manufactured using Atmel’s high-density non-volatile memory technology. The
On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI
serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot pro-
gram running on the AVR core. The Boot Program can use any interface to download the
Application Program in the Application Flash memory. Software in the Boot Flash section will
continue to run while the Application Flash section is updated, providing true Read-While-Write
operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a
monolithic chip, the Atmel ATmega64 is a powerful microcontroller that provides a highly-flexible
and cost-effective solution to many embedded control applications.

The ATmega64 AVR is supported with a full suite of program and system development tools
including: C compilers, macro assemblers, program debugger/simulators, In-Circuit Emulators,
and evaluation Kkits.

The ATmega64 is a highly complex microcontroller where the number of I/O locations super-
sedes the 64 1/O location reserved in the AVR instruction set. To ensure backward compatibility
with the ATmega103, all I/O locations present in ATmega103 have the same location in
ATmega64. Most additional I/O locations are added in an Extended 1/O space starting from 0x60
to OxFF (that is, in the ATmega103 internal RAM space). These location can be reached by
using LD/LDS/LDD and ST/STS/STD instructions only, not by using IN and OUT instructions.
The relocation of the internal RAM space may still be a problem for ATmega103 users. Also, the
increased number of Interrupt Vectors might be a problem if the code uses absolute addresses.
To solve these problems, an ATmegai03 compatibility mode can be selected by programming
the fuse M103C. In this mode, none of the functions in the Extended I/O space are in use, so the
internal RAM is located as in ATmega103. Also, the extended Interrupt Vectors are removed.

The ATmega64 is 100% pin compatible with ATmega103, and can replace the ATmega103 on
current printed circuit boards. The application notes “Replacing ATmega103 by ATmega128”
and “Migration between ATmega64 and ATmega128” describes what the user should be aware
of replacing the ATmega103 by an ATmega128 or ATmega64.

| /ltmeL 4

2490R-AVR-02/2013

| ATmega64(L)

ATmegal03
Compatibility Mode

Pin Descriptions
vce
GND

Port A (PA7..PAO0)

Port B (PB7..PB0)

By programming the M103C Fuse, the ATmega64 will be compatible with the ATmega103
regards to RAM, I/O pins and Interrupt Vectors as described above. However, some new fea-
tures in ATmega64 are not available in this compatibility mode, these features are listed below:

¢ One USART instead of two, asynchronous mode only. Only the eight least significant bits of
the Baud Rate Register is available.

* One 16 bits Timer/Counter with two compare registers instead of two 16 bits Timer/Counters
with three compare registers.

e Two-wire serial interface is not supported.

¢ Port G serves alternate functions only (not a general I/O port).

e Port F serves as digital input only in addition to analog input to the ADC.

e Boot Loader capabilities is not supported.

e ltis not possible to adjust the frequency of the internal calibrated RC Oscillator.

e The External Memory Interface can not release any Address pins for general I/O, neither
configure different wait states to different External Memory Address sections.

e Only EXTRF and PORF exist in the MCUCSR Register.

* No timed sequence is required for Watchdog Timeout change.

* Only low-level external interrupts can be used on four of the eight External Interrupt sources.
e Port C is output only.

e USART has no FIFO buffer, so Data OverRun comes earlier.

* The user must have set unused I/O bits to 0 in ATmega103 programs.

Digital supply voltage.
Ground.

Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port A output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port A pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port A also serves the functions of various special features of the ATmega64 as listed on page
73.

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port B also serves the functions of various special features of the ATmega64 as listed on page
74.

| /ltmeL 5

2490R-AVR-02/2013

| ATmega64(L)

Port C (PC7..PCO)

Port D (PD7..PDO)

Port E (PE7..PEO)

Port F (PF7..PF0)

Port G (PG4..PGO0)

Port C is an 8-bit bi-directional 1/0 port with internal pull-up resistors (selected for each bit). The
Port C output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port C pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port C also serves the functions of special features of the ATmega64 as listed on page 77. In
ATmega103 compatibility mode, Port C is output only, and the port C pins are not tri-stated
when a reset condition becomes active.

Port D is an 8-bit bi-directional 1/0 port with internal pull-up resistors (selected for each bit). The
Port D output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port D also serves the functions of various special features of the ATmega64 as listed on page
78.

Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port E output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port E pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port E also serves the functions of various special features of the ATmega64 as listed on page
81.

Port F serves as the analog inputs to the A/D Converter.

Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins
can provide internal pull-up resistors (selected for each bit). The Port F output buffers have sym-
metrical drive characteristics with both high sink and source capability. As inputs, Port F pins
that are externally pulled low will source current if the pull-up resistors are activated. The Port F
pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the
JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS) and PF4(TCK) will
be activated even if a reset occurs.

The TDO pin is tri-stated unless TAP states that shift out data are entered.
Port F also serves the functions of the JTAG interface.

In ATmega103 compatibility mode, Port F is an input port only.

Port G is a 5-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port G output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port G pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port G pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port G also serves the functions of various special features.

In ATmega103 compatibility mode, these pins only serves as strobes signals to the external
memory as well as input to the 32 kHz Oscillator, and the pins are initialized to PGO = 1,
PG1 =1, and PG2 = 0 asynchronously when a reset condition becomes active, even if the clock
is not running. PG3 and PG4 are Oscillator pins.

| /ltmeL 6

2490R-AVR-02/2013

| ATmega64(L)

RESET

XTALA1
XTAL2

AVCC

AREF

PEN

| /ltmeL

2490R-AVR-02/2013

Reset input. A low level on this pin for longer than the minimum pulse length will generate a
reset, even if the clock is not running. The minimum pulse length is given in Table 19 on page
52. Shorter pulses are not guaranteed to generate a reset.

Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

Output from the inverting Oscillator amplifier.

AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally con-
nected to V¢, even if the ADC is not used. If the ADC is used, it should be connected to V¢
through a low-pass filter.

AREEF is the analog reference pin for the A/D Converter.

This is a programming enable pin for the SPI Serial Programming mode. By holding this pin low
during a Power-on Reset, the device will enter the SPI Serial Programming mode. PEN is inter-

nally pulled high. The pullup is shown in Figure 22 on page 52 and its value is given in Section
“DC Characteristics” on page 325. PEN has no function during normal operation.

| ATmega64(L)

Resources A comprehensive set of development tools, application notes and datasheetsare available for
download on http://www.atmel.com/avr.

Data Retention Reliability Qualification results show that the projected data retention failure rate is much less
than 1 PPM over 20 years at 85°C or 100 years at 25°C.

| AtmeL
2490R-AVR-02/2013

| ATmega64(L)

About Code
Examples

| /ltmeL

2490R-AVR-02/2013

This datasheet contains simple code examples that briefly show how to use various parts of the
device. These code examples assume that the part specific header file is included before compi-
lation. Be aware that not all C compiler vendors include bit definitions in the header files and
interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation
for more details.

For 1/0 Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

| ATmega64(L)

AVR CPU Core

Introduction

Architectural

This section discusses the AVR core architecture in general. The main function of the CPU core
is to ensure correct program execution. The CPU must therefore be able to access memories,
perform calculations, control peripherals, and handle interrupts.

Figure 3. Block Diagram of the AVR MCU Architecture

Overview
‘ Data Bus 8-bit
A
Program Status
Flash Counter < and Control
Program
Memory <
Interrupt
4 > 32x8 < Unit
Instruction General
Register Purpose SP|
< Registrers < Unit
Instruction Watchdog
Decoder « ;
o o S Timer
£ k7]
[} [}
i 3 g ALU <> Analog
Control Lines 3 2 Comparator
< -
s 3
() =
= o PN
o £ “<>| /O Modulet
Data < /0 Module 2
> SRAM
<> |/O Module n
EEPROM
I/O Lines
In order to maximize performance and parallelism, the AVR uses a Harvard architecture — with
separate memories and buses for program and data. Instructions in the program memory are
executed with a single level pipelining. While one instruction is being executed, the next instruc-
tion is pre-fetched from the program memory. This concept enables instructions to be executed
in every clock cycle. The program memory is In-System Reprogrammable Flash memory.
The fast-access Register File contains 32 x 8-bit general purpose working registers with a single
clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typ-
ical ALU operation, two operands are output from the Register File, the operation is executed,
and the result is stored back in the Register File — in one clock cycle.
Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data
Space addressing — enabling efficient address calculations. One of the these address pointers
|
Atmel 10

2490R-AVR-02/2013

| ATmega64(L)

ALU - Arithmetic
Logic Unit

can also be used as an address pointer for look up tables in Flash program memory. These
added function registers are the 16-bit X-, Y-, and Z-register, described later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant and
a register. Single register operations can also be executed in the ALU. After an arithmetic opera-
tion, the Status Register is updated to reflect information about the result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions, able to
directly address the whole address space. Most AVR instructions have a single 16-bit word for-
mat. Every program memory address contains a 16-bit or 32-bit instruction.

Program Flash memory space is divided in two sections, the Boot program section and the
Application program section. Both sections have dedicated Lock bits for write and read/write
protection. The SPM instruction that writes into the Application Flash memory section must
reside in the Boot program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the
Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack
size is only limited by the total SRAM size and the usage of the SRAM. All user programs must
initialize the SP in the reset routine (before subroutines or interrupts are executed). The Stack
Pointer SP is read/write accessible in the 1/0 space. The data SRAM can easily be accessed
through the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the 1/O space with an additional Global
Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the
Interrupt Vector table. The interrupts have priority in accordance with their Interrupt Vector posi-
tion. The lower the Interrupt Vector address, the higher the priority.

The I/0 memory space contains 64 addresses which can be accessed directly, or as the Data
Space locations following those of the Register File, 0x20 - Ox5F. In addition, the ATmega64 has
Extended 1/O space from 0x60 - OxFF in SRAM where only the ST/STS/STD and LD/LDS/LDD
instructions can be used.

The high-performance AVR ALU operates in direct connection with all the 32 general purpose
working registers. Within a single clock cycle, arithmetic operations between general purpose
registers or between a register and an immediate are executed. The ALU operations are divided
into three main categories — arithmetic, logical, and bit-functions. Some implementations of the
architecture also provide a powerful multiplier supporting both signed/unsigned multiplication
and fractional format. See the “Instruction Set” section for a detailed description.

| /ltmeL 11

2490R-AVR-02/2013

| ATmega64(L)

Status Register The Status Register contains information about the result of the most recently executed arithme-
tic instruction. This information can be used for altering program flow in order to perform
conditional operations. Note that the Status Register is updated after all ALU operations, as
specified in the Instruction Set Reference. This will in many cases remove the need for using the
dedicated compare instructions, resulting in faster and more compact code.

The Status Register is not automatically stored when entering an interrupt routine and restored
when returning from an interrupt. This must be handled by software.

SREG — AVR Status The AVR Status Register — SREG — is defined as:

RegiSter Bit 7 6 5 4 3 2 1 0

0x3F (0x5F) |] | T | H | s | v N z c | sRec

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
e Bit 7 — I: Global Interrupt Enable
The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual inter-
rupt enable control is then performed in separate control registers. If the Global Interrupt Enable
Register is cleared, none of the interrupts are enabled independent of the individual interrupt
enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by
the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared in
software with the SEI and CLI instructions, as described in the instruction set reference.
e Bit 6 — T: Bit Copy Storage
The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or desti-
nation for the operated bit. A bit from a register in the Register File can be copied into T by the
BST instruction, and a bit in T can be copied into a bit in a register in the Register File by the
BLD instruction.
e Bit 5 — H: Half Carry Flag
The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry is useful
in BCD arithmetic. See the “Instruction Set Description” for detailed information.
e Bit4-S:SignBit, S=N®V
The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement
Overflow Flag V. See the “Instruction Set Description” for detailed information.
e Bit 3 - V: Two’s Complement Overflow Flag
The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See the
“Instruction Set Description” for detailed information.
¢ Bit 2 — N: Negative Flag
The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the
“Instruction Set Description” for detailed information.
e Bit1-2Z: Zero Flag
The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction
Set Description” for detailed information.

| Atme[12

2490R-AVR-02/2013

| ATmega64(L)

General Purpose
Register File

* Bit 0 - C: Carry Flag

The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set
Description” for detailed information.

The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve
the required performance and flexibility, the following input/output schemes are supported by the
Register File:

e One 8-bit output operand and one 8-bit result input.
e Two 8-bit output operands and one 8-bit result input.
e Two 8-bit output operands and one 16-bit result input.
¢ One 16-bit output operand and one 16-bit result input.

Figure 4 shows the structure of the 32 general purpose working registers in the CPU.

Figure 4. AVR CPU General Purpose Working Registers

7 0 Addr.
RO 0x00
R1 0x01
R2 0x02
R13 0x0D
General R14 0x0E
Purpose R15 0xOF
Working R16 0x10
Registers R17 0x11
R26 0x1A X-register Low Byte
R27 0x1B X-register High Byte
R28 0x1C Y-register Low Byte
R29 0x1D Y-register High Byte
R30 Ox1E Z-register Low Byte
R31 0x1F Z-register High Byte

Most of the instructions operating on the Register File have direct access to all registers, and
most of them are single cycle instructions.

As shown in Figure 4, each register is also assigned a data memory address, mapping them
directly into the first 32 locations of the user data space. Although not being physically imple-
mented as SRAM locations, this memory organization provides great flexibility in access of the
registers, as the X-, Y-, and Z-pointer registers can be set to index any register in the file.

IEEEEsssssss—————— /|t mel 13

2490R-AVR-02/2013

| ATmega64(L)

X-, Y-, and Z-register The registers R26..R31 have some added functions to their general purpose usage. These reg-
isters are 16-bit address pointers for indirect addressing of the data space. The three indirect
address registers X, Y, and Z are defined as described in Figure 5.

Figure 5. The X-, Y-, and Z-Registers

15 XH XL

X - register 7 o7 o]
R27 (0x1B) R26 (0x1A)
15 YH YL

Y - register I 7 0 I 7 0 I
R29 (0x1D) R28 (0x1C)
15 ZH ZL

Z - register I 7 0 I 7 0 I
R31 (0x1F) R30 (0x1E)

In the different addressing modes these address registers have functions as fixed displacement,
automatic increment, and automatic decrement (see the Instruction Set Reference for details).

Stack Pointer The Stack is mainly used for storing temporary data, for storing local variables and for storing
return addresses after interrupts and subroutine calls. The Stack Pointer Register always points
to the top of the Stack. Note that the Stack is implemented as growing from higher memory loca-
tions to lower memory locations. This implies that a Stack PUSH command decreases the Stack
Pointer. If software reads the Program Counter from the Stack after a call or an interrupt, unused
bits (bit 15) should be masked out.

The Stack Pointer points to the data SRAM Stack area where the subroutine and interrupt
Stacks are located. This Stack space in the data SRAM must be defined by the program before
any subroutine calls are executed or interrupts are enabled. The Stack Pointer must be set to
point above 0x60. The Stack Pointer is decremented by one when data is pushed onto the Stack
with the PUSH instruction, and it is decremented by two when the return address is pushed onto
the Stack with subroutine call or interrupt. The Stack Pointer is incremented by one when data is
popped from the Stack with the POP instruction, and it is incremented by two when data is
popped from the Stack with return from subroutine RET or return from interrupt RETI.

The AVR Stack Pointer is implemented as two 8-bit registers in the 1/0 space. The number of
bits actually used is implementation dependent. Note that the data space in some implementa-
tions of the AVR architecture is so small that only SPL is needed. In this case, the SPH Register
will not be present.

Bit 15 14 13 12 11 10 9 8
0x3E (OX5E) SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH
0x3D (0x5D) SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO SPL
7 6 5 4 3 2 1 0
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
Instruction This section describes the general access timing concepts for instruction execution. The AVR

Execution Timing CPU is driven by the CPU clock clkgpy, directly generated from the selected clock source for the
chip. No internal clock division is used.

| AtmeL 14
2490R-AVR-02/2013

| ATmega64(L)

Reset and
Interrupt Handling

Figure 6 shows the parallel instruction fetches and instruction executions enabled by the Har-
vard architecture and the fast-access Register File concept. This is the basic pipelining concept
to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost,
functions per clocks, and functions per power-unit.

Figure 6. The Parallel Instruction Fetches and Instruction Executions
T T2 T3 T4

okony —4 N/ [

CPU
1st Instruction Fetch

1st Instruction Execute
2nd Instruction Fetch
2nd Instruction Execute
3rd Instruction Fetch
3rd Instruction Execute
4th Instruction Fetch | | | |

Figure 7 shows the internal timing concept for the Register File. In a single clock cycle an ALU
operation using two register operands is executed, and the result is stored back to the destina-
tion register.

Figure 7. Single Cycle ALU Operation
T T2 T3 T4

O A N S N A N A N

CPU

Total Execution Time

|

|

|

l
Register Operands Fetch l
|

ALU Operation Execute l

|

|

Result Write Back

The AVR provides several different interrupt sources. These interrupts and the separate Reset
Vector each have a separate program vector in the program memory space. All interrupts are
assigned individual enable bits which must be written logic one together with the Global Interrupt
Enable bit in the Status Register in order to enable the interrupt. Depending on the Program
Counter value, interrupts may be automatically disabled when Boot Lock bits BLB02 or BLB12
are programmed. This feature improves software security. See the section “Memory Program-
ming” on page 290 for details.

The lowest addresses in the program memory space are by default defined as the Reset and
Interrupt Vectors. The complete list of vectors is shown in “Interrupts” on page 61. The list also
determines the priority levels of the different interrupts. The lower the address the higher is the
priority level. RESET has the highest priority, and next is INTO — the External Interrupt Request
0. The Interrupt Vectors can be moved to the start of the Boot Flash section by setting the IVSEL
bit in the MCU Control Register (MCUCR). Refer to “Interrupts” on page 61 for more information.
The Reset Vector can also be moved to the start of the Boot Flash section by programming the
BOOTRST Fuse, see “Boot Loader Support — Read-While-Write Self-programming” on page
277.

IEEEEsssssss—————— /|t mel 15

2490R-AVR-02/2013

| ATmega64(L)

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are dis-
abled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled
interrupts can then interrupt the current interrupt routine. The I-bit is automatically set when a
Return from Interrupt instruction — RETI — is executed.

There are basically two types of interrupts. The first type is triggered by an event that sets the
interrupt flag. For these interrupts, the Program Counter is vectored to the actual Interrupt Vector
in order to execute the interrupt handling routine, and hardware clears the corresponding inter-
rupt flag. Interrupt flags can also be cleared by writing a logic one to the flag bit position(s) to be
cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is cleared,
the interrupt flag will be set and remembered until the interrupt is enabled, or the flag is cleared
by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt Enable
bit is cleared, the corresponding interrupt flag(s) will be set and remembered until the Global
Interrupt Enable bit is set, and will then be executed by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present. These
interrupts do not necessarily have interrupt flags. If the interrupt condition disappears before the
interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and execute one
more instruction before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt routine, nor
restored when returning from an interrupt routine. This must be handled by software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled.
No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the
CLlI instruction. The following example shows how this can be used to avoid interrupts during the
timed EEPROM write sequence.

Assembly Code Example

in rl6, SREG ; Store SREG value
cli ; disable interrupts during timed sequence
sbi EECR, EEMWE ; Sstart EEPROM write

sbi EECR, EEWE
out SREG, rlé6 ; restore SREG value (I-bit)

C Code Example

char cSREG;
cSREG = SREG; /* store SREG value */

/* disable interrupts during timed sequence */

_CLI();
EECR |= (1<<EEMWE); /* start EEPROM write */
EECR |= (1<<EEWE);

SREG = cSREG; /* restore SREG value (I-bit) */

| AtmeL 16
2490R-AVR-02/2013

| ATmega64(L)

Interrupt Response
Time

When using the SEI instruction to enable interrupts, the instruction following SEI will be exe-

cuted before any pending interrupts, as shown in this example.

Assembly Code Example

sei ; set global interrupt enable
sleep ; enter sleep, waiting for interrupt
; note: will enter sleep before any pending

; interrupt(s)

C Code Example

_SEI(); /* set global interrupt enable */
_SLEEP(); /* enter sleep, waiting for interrupt */

/* note: will enter sleep before any pending interrupt(s)

*/

The interrupt execution response for all the enabled AVR interrupts is four clock cycles mini-
mum. After four clock cycles the program vector address for the actual interrupt handling routine
is executed. During this four clock cycle period, the Program Counter is pushed onto the Stack.
The vector is normally a jump to the interrupt routine, and this jump takes three clock cycles. If
an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed
before the interrupt is served. If an interrupt occurs when the MCU is in sleep mode, the interrupt
execution response time is increased by four clock cycles. This increase comes in addition to the

start-up time from the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four clock
cycles, the Program Counter (two bytes) is popped back from the Stack, the Stack Pointer is

incremented by two, and the I-bit in SREG is set.

| /ltmeL

2490R-AVR-02/2013

17

| ATmega64(L)

AVR Memories

In-System
Reprogrammable
Flash Program
Memory

This section describes the different memories in the ATmega64. The AVR architecture has two
main memory spaces, the Data Memory and the Program Memory space. In addition, the
ATmega64 features an EEPROM Memory for data storage. All three memory spaces are linear
and regular.

The ATmega64 contains 64 Kbytes On-chip In-System Reprogrammable Flash memory for pro-
gram storage. Since all AVR instructions are 16 bits or 32 bits wide, the Flash is organized as
32K x 16. For software security, the Flash Program memory space is divided into two sections,
Boot Program section and Application Program section.

The Flash memory has an endurance of at least 10,000 write/erase cycles. The ATmega64 Pro-
gram Counter (PC) is 15 bits wide, thus addressing the 32K program memory locations. The
operation of Boot Program section and associated Boot Lock bits for software protection are
described in detail in “Boot Loader Support — Read-While-Write Self-programming” on page 277.
“Memory Programming” on page 290 contains a detailed description on Flash programming in
SPI, JTAG, or Parallel Programming mode.

Constant tables can be allocated within the entire program memory address space (see the LPM
— Load Program Memory instruction description).

Timing diagrams for instruction fetch and execution are presented in “Instruction Execution Tim-
ing” on page 14.

Figure 8. Program Memory Map

$0000

Application Flash Section

-

Boot Flash Section

$7FFF

IEEEEsssssss—————— /|t mel 18

2490R-AVR-02/2013

| ATmega64(L)

SRAM Data The ATmega64 supports two different configurations for the SRAM data memory as listed in
Memory Table 1.

Table 1. Memory Configurations

Internal SRAM External SRAM
Configuration Data Memory Data Memory
Normal mode 4096 up to 64K
ATmega103 compatibility mode 4000 up to 64K

Figure 9 on page 20 shows how the ATmega64 SRAM Memory is organized.

The ATmega64 is a complex microcontroller with more peripheral units than can be supported
within the 64 locations reserved in the Opcode for the IN and OUT instructions. For the
Extended I/O space from 0x60 - OxFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instruc-
tions can be used. The Extended I/O space does not exist when the ATmega64 is in the
ATmega103 compatibility mode.

The first 4,352 data memory locations address both the Register File, the I/O memory, Extended
I/0 memory, and the internal data SRAM. The first 32 locations address the Register File, the
next 64 location the standard I/O memory, then 160 locations of Extended /O memory, and the
next 4,096 locations address the internal data SRAM.

In ATmega103 compatibility mode, the first 4,096 data memory locations address both the Reg-
ister File, the /O memory and the internal data SRAM. The first 32 locations address the
Register File, the next 64 location the standard I/O memory, and the next 4,000 locations
address the internal data SRAM.

An optional external data SRAM can be used with the ATmega64. This SRAM will occupy an
area in the remaining address locations in the 64K address space. This area starts at the
address following the internal SRAM. The Register File, /0, Extended I/O and internal SRAM
occupy the lowest 4,352 bytes in Normal mode, and the lowest 4,096 bytes in the ATmegai03
compatibility mode (Extended I/O not present), so when using 64 Kbytes(65,536 bytes) of Exter-
nal memory, 61,184 Bytes of External memory are available in Normal mode, and 61,440 Bytes
in ATmega103 compatibility mode. See “External Memory Interface” on page 27 for details on
how to take advantage of the external memory map.

When the addresses accessing the SRAM memory space exceeds the internal data memory
locations, the external data SRAM is accessed using the same instructions as for the internal
data memory access. When the internal data memories are accessed, the read and write strobe
pins (PGO and PG1) are inactive during the whole access cycle. External SRAM operation is
enabled by setting the SRE bit in the MCUCR Register.

Accessing external SRAM takes one additional clock cycle per byte compared to access of the
internal SRAM. This means that the commands LD, ST, LDS, STS, LDD, STD, PUSH, and POP
take one additional clock cycle. If the Stack is placed in external SRAM, interrupts, subroutine
calls and returns take three clock cycles extra because the 2-byte Program Counter is pushed
and popped, and external memory access does not take advantage of the internal pipeline
memory access. When external SRAM interface is used with wait state, one-byte external
access takes two, three, or four additional clock cycles for one, two, and three wait states
respectively. Interrupt, subroutine calls and returns will need five, seven, or nine clock cycles
more than specified in the AVR Instruction Set manual for one, two, and three waitstates.

The five different addressing modes for the data memory cover: Direct, Indirect with Displace-
ment, Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In the Register
File, registers R26 to R31 feature the indirect addressing pointer registers.

The direct addressing reaches the entire data space.

| AtmeL 19
2490R-AVR-02/2013

| ATmega64(L)

The Indirect with Displacement mode reaches 63 address locations from the base address given

by the Y- or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-incre-

ment, the address registers X, Y, and Z are decremented or incremented.

The 32 general purpose working registers, 64 /O Registers, 160 extended I/O Registers, and
the 4,096 bytes of internal data SRAM in the ATmega64 are all accessible through all these
addressing modes. The Register File is described in “General Purpose Register File” on page

13.

Figure 9. Data Memory Map

Data Memory

32 Registers

64 1/0 Registers

160 Ext I/O Reg.

Internal SRAM
(4096 x 8)

External SRAM
(0-64K x 8)

Memory Configuration A

$0000 - $001F
$0020 - $005F
$0060 - $00FF
$0100

$10FF
$1100

$FFFF

Memory Configuration B

Data Memory

32 Registers

$0000 - $001F

64 1/0 Registers

$0020 - $005F

Internal SRAM
(4000 x 8)

$0060

$OFFF

External SRAM
(0- 64K x 8)

$1000

| /ltmeL

2490R-AVR-02/2013

20

| ATmega64(L)

Data Memory Access This section describes the general access timing concepts for internal memory access. The
Times internal data SRAM access is performed in two clkgpy cycles as described in Figure 10.

Figure 10. On-chip Data SRAM Access Cycles
T1 T2 T3

ok . N/ N_J

CPU \ \ \
Address | Compute Address | X__Address Valid |

Data | | | —] P

WR L/ N _ =

Data f f | o

! : ! 3

RD / j "

Memory Access Instruction Next Instruction

EEPROM Data The ATmega64 contains 2 Kbytes of data EEPROM memory. It is organized as a separate data
Memory space, in which single bytes can be read and written. The EEPROM has an endurance of at

least 100,000 write/erase cycles. The access between the EEPROM and the CPU is described
in the following, specifying the EEPROM Address Registers, the EEPROM Data Register, and
the EEPROM Control Register.

“Memory Programming” on page 290 contains a detailed description on EEPROM programming
in SPI, JTAG, or Parallel Programming mode.

EEPROM Read/Write The EEPROM Access Registers are accessible in the I/O space.

Access The write access time for the EEPROM is given in Table 2 on page 24. A self-timing function,

however, lets the user software detect when the next byte can be written. If the user code con-
tains instructions that write the EEPROM, some precautions must be taken. In heavily filtered
power supplies, V¢ is likely to rise or fall slowly on Power-up/down. This causes the device for
some period of time to run at a voltage lower than specified as minimum for the clock frequency
used. See “Preventing EEPROM Corruption” on page 26. for details on how to avoid problems in
these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed.
Refer to the description of the EEPROM Control Register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is
executed. When the EEPROM is written, the CPU is halted for two clock cycles before the next
instruction is executed.

| AtmeL 21
2490R-AVR-02/2013

| ATmega64(L)

EEARH and EEARL -

EEPROM Address Bit 15 14 13 12 1" 10 9 8
Register 0x1F (0x3F) - - - - - EEAR10 | EEAR9 EEARS8 EEARH
0x1E (0x3E) EEAR7 EEAR6 | EEAR5 | EEAR4 | EEAR3 EEAR2 EEAR1 EEARO EEARL
7 6 5 4 3 2 1 0
Read/Write R R R R R R/W RIW R/IW
R/W R/IW R/IW R/W R/W R/IW R/IW RIW
Initial Value 0 0 0 0 0 X X X
X X X X X X X X

¢ Bits 15..11 — Res: Reserved Bits

These are reserved bits and will always read as zero. When writing to this address location,
write these bits to zero for compatibility with future devices.

* Bits 10..0 - EEAR10..0: EEPROM Address

The EEPROM Address Registers — EEARH and EEARL specify the EEPROM address in the 2
Kbytes EEPROM space. The EEPROM data bytes are addressed linearly between 0 and 2,048.
The Initial Value of EEAR is undefined. A proper value must be written before the EEPROM may
be accessed.

EEDR — EEPROM Data

Register Bit 7 6 5 4 3 2 1 0
0x1D (0x3D) | MSB LSB | EEDR
Read/Write RIW R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bits 7..0 - EEDR7.0: EEPROM Data

For the EEPROM write operation, the EEDR Register contains the data to be written to the
EEPROM in the address given by the EEAR Register. For the EEPROM read operation, the
EEDR contains the data read out from the EEPROM at the address given by EEAR.

EECR - EEPROM

Control Register Bit 7 6 5 4 3 2 L 0
0x1C (0x3C) | - - EERIE | EEMWE | EEWE EERE | EECR
Read/Write R R R R RIW RIW R/W R/W
Initial Value 0 0 0 0 0 0 X 0

¢ Bits 7..4 — Res: Reserved Bits

These bits are reserved bits in the ATmega64 and will always read as zero.

¢ Bit 3 — EERIE: EEPROM Ready Interrupt Enable

Writing EERIE to one enables the EEPROM Ready Interrupt if the I-bit in SREG is set. Writing
EERIE to zero disables the interrupt. The EEPROM Ready Interrupt generates a constant inter-
rupt when EEWE is cleared.

| AtmeL 22
2490R-AVR-02/2013

| ATmega64(L)

¢ Bit 2 - EEMWE: EEPROM Master Write Enable

The EEMWE bit determines whether setting EEWE to one causes the EEPROM to be written.
When EEMWE is written to one, writing EEWE to one within four clock cycles will write data to
the EEPROM at the selected address. If EEMWE is zero, writing EEWE to one will have no
effect. When EEMWE has been written to one by software, hardware clears the bit to zero after
four clock cycles. See the description of the EEWE bit for an EEPROM write procedure.

* Bit 1 - EEWE: EEPROM Write Enable

The EEPROM Write Enable Signal EEWE is the write strobe to the EEPROM. When address
and data are correctly set up, the EEWE bit must be set to write the value into the EEPROM.
The EEMWE bit must be set when the logical one is written to EEWE, otherwise no EEPROM
write takes place. The following procedure should be followed when writing the EEPROM (the
order of steps 3 and 4 is not essential):

Wait until EEWE becomes zero.

Wait until SPMEN in SPMCSR becomes zero.

Write new EEPROM address to EEAR (optional).

Write new EEPROM data to EEDR (optional).

Write a logical one to the EEMWE bit while writing a zero to EEWE in EECR.
Within four clock cycles after setting EEMWE, write a logical one to EEWE.

o0~ 0bd =

The EEPROM can not be programmed during a CPU write to the Flash memory. The software
must check that the Flash programming is completed before initiating a new EEPROM write.
Step 2 is only relevant if the software contains a Boot Loader allowing the CPU to program the
Flash. If the Flash is never being updated by the CPU, step 2 can be omitted. See “Boot Loader
Support — Read-While-Write Self-programming” on page 277 for details about Boot
programming.

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the
EEPROM Master Write Enable will time-out. If an interrupt routine accessing the EEPROM is
interrupting another EEPROM access, the EEAR or EEDR Register will be modified, causing the
interrupted EEPROM access to fail. It is recommended to have the Global Interrupt Flag cleared
during the four last steps to avoid these problems.

When the write access time has elapsed, the EEWE bit is cleared by hardware. The user soft-
ware can poll this bit and wait for a zero before writing the next byte. When EEWE has been set,
the CPU is halted for two cycles before the next instruction is executed.

* Bit 0 - EERE: EEPROM Read Enable

The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the correct
address is set up in the EEAR Register, the EERE bit must be written to a logic one to trigger the
EEPROM read. The EEPROM read access takes one instruction, and the requested data is
available immediately. When the EEPROM is read, the CPU is halted for four cycles before the
next instruction is executed.

The user should poll the EEWE bit before starting the read operation. If a write operation is in
progress, it is neither possible to read the EEPROM, nor to change the EEAR Register.

The calibrated Oscillator is used to time the EEPROM accesses. Table 2 lists the typical pro-
gramming time for EEPROM access from the CPU.

| AtmeL 23
2490R-AVR-02/2013

| ATmega64(L)

Table 2. EEPROM Programming Time("

Number of Calibrated RC

Symbol Oscillator Cycles Typ Programming Time

EEPROM write (from CPU) 8448 8.4 ms

Note: 1. Uses 1 MHz clock, independent of CKSEL Fuse settings.

The following code examples show one assembly and one C function for writing to the
EEPROM. The examples assume that interrupts are controlled (for example, by disabling inter-
rupts globally) so that no interrupts will occur during execution of these functions. The examples
also assume that no Flash boot loader is present in the software. If such code is present, the

EEPROM write function must also wait for any ongoing SPM command to finish.

Assembly Code Example

EEPROM_write:
; Wait for completion of previous write

sbic EECR, EEWE

rjmp EEPROM_write

; Set up address (rl8:rl17) in address register

out EEARH, rl8

out EEARL, rl7

; Write data (rl6) to data register

out EEDR,rl6

; Write logical one to EEMWE

sbi EECR, EEMWE

; Start eeprom write by setting EEWE

sbi EECR, EEWE

ret

C Code Example

void EEPROM_write (unsigned int uiAddress, unsigned char ucData)
{
/* Wait for completion of previous write */
while (EECR & (1<<EEWE))
/* Set up address and data registers */
EEAR = uiAddress;
EEDR = ucData;
/* Write logical one to EEMWE */
EECR |= (1<<EEMWE) ;
/* Start eeprom write by setting EEWE */
EECR |= (1<<EEWE);

| /ltmeL

2490R-AVR-02/2013

24

| ATmega64(L)

The next code examples show assembly and C functions for reading the EEPROM. The exam-
ples assume that interrupts are controlled so that no interrupts will occur during execution of
these functions.

Assembly Code Example

EEPROM_read:
; Wait for completion of previous write
sbic EECR, EEWE
rjmp EEPROM_read
; Set up address (rl8:rl17) in address register
out EEARH, rl8
out EEARL, rl7
; Start eeprom read by writing EERE
sbi EECR, EERE
; Read data from data register
in r1l6, EEDR

ret

C Code Example

unsigned char EEPROM_read(unsigned int uiAddress)
{

/* Wait for completion of previous write */

while (EECR & (1<<EEWE))

/* Set up address register */

EEAR = uiAddress;

/* Start eeprom read by writing EERE */

EECR |= (1<<EERE);

/* Return data from data register */

return EEDR;

EEPROM Write During When entering Power-down Sleep mode while an EEPROM write operation is active, the

Power-down Sleep EEPROM write operation will continue, and will complete before the Write Access time has

Mode passed. However, when the write operation is completed, the oscillator continues running, and
as a consequence, the device does not enter Power-down entirely. It is therefore recommended
to verify that the EEPROM write operation is completed before entering Power-down.

| AtmeL 25
2490R-AVR-02/2013

| ATmega64(L)

Preventing EEPROM
Corruption

/0 Memory

During periods of low V. the EEPROM data can be corrupted because the supply voltage is
too low for the CPU and the EEPROM to operate properly. These issues are the same as for
board level systems using EEPROM, and the same design solutions should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too low. First,
a regular write sequence to the EEPROM requires a minimum voltage to operate correctly. Sec-
ondly, the CPU itself can execute instructions incorrectly, if the supply voltage is too low.

EEPROM data corruption can easily be avoided by following this design recommendation:

Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This
can be done by enabling the internal Brown-out Detector (BOD). If the detection level of the
internal BOD does not match the needed detection level, an external low V., Reset Protec-
tion circuit can be used. If a reset occurs while a write operation is in progress, the write
operation will be completed provided that the power supply voltage is sufficient.

The 1/0 space definition of the ATmega64 is shown in “Register Summary” on page 392.

All ATmega64 I/Os and peripherals are placed in the /O space. All 1/0 locations may be
accessed by the LD/LDS/LDD and ST/STS/STD instructions, transferring data between the 32
general purpose working registers and the I/O space. I/O Registers within the address range
0x00 - Ox1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the
value of single bits can be checked by using the SBIS and SBIC instructions. Refer to the
instruction set section for more details. When using the 1/O specific commands IN and OUT, the
I/O addresses 0x00 - 0x3F must be used. When addressing I/0O Registers as data space using
LD and ST instructions, 0x20 must be added to these addresses. The ATmega64 is a complex
microcontroller with more peripheral units than can be supported within the 64 location reserved
in Opcode for the IN and OUT instructions. For the Extended 1/O space from 0x60 - OxFF in
SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used. The Extended I/O
space is replaced with SRAM locations when the ATmega64 is in the ATmega103 compatibility
mode.

For compatibility with future devices, reserved bits should be written to zero if accessed.
Reserved I/O memory addresses should never be written.

Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI
instructions will operate on all bits in the 1/0 Register, writing a one back into any flag read as
set, thus clearing the flag. The CBI and SBI instructions work with registers 0x00 to Ox1F only.

The I/O and peripherals control registers are explained in later sections.

| /ltmeL 26

2490R-AVR-02/2013

| ATmega64(L)

External Memory With all the features that the External Memory Interface provides, it is well suited to operate as
Interface an interface to memory devices such as external SRAM and Flash, and peripherals such as
LCD-display, A/D, and D/A. The main features are:

e Four different wait-state settings (Including no wait-state).

¢ Independent wait-state setting for different external memory sectors (configurable sector
size).

e The number of bits dedicated to address high byte is selectable.

* Bus Keepers on data lines to minimize current consumption (optional).

Overview When the eXternal MEMory (XMEM) is enabled, address space outside the internal SRAM
becomes available using the dedicated external memory pins (see Figure 1 on page 2, Table 27
on page 73, Table 33 on page 77, and Table 45 on page 85). The memory configuration is
shown in Figure 11.

Figure 11. External Memory with Sector Select(!)

Memory Configuration A Memory Configuration B
0x0000 0x0000
Internal Memory Internal Memory
OxOFFF
A 0x1000
0x10FF
A 0x1100
Lower Sector
SRWO1
SRWO00
———————— SRL[2..0] SRW10
External Memory| Upper Sector External Memory
(0-60K x 8) (0-60K x 8)
SRW11
SRW10
\ / OxFFFF / OXFFFF

Note: 1. ATmega64 in non ATmega103 compatibility mode: Memory Configuration A is available (Mem-
ory Configuration B N/A).
ATmega64 in megal103 compatibility mode: Memory Configuration B is available (Memory
Configuration A N/A).

| AtmeL 27

2490R-AVR-02/2013

| ATmega64(L)

ATmegal03 Both External Memory Control Registers, XMCRA and XMCRB, are placed in Extended I/O

Compatibility space. In ATmega103 compatibility mode, these registers are not available, and the features
selected by these registers are not available. The device is still ATmega103 compatible, as
these features did not exist in ATmega103. The limitations in ATmega103 compatibility mode
are:

¢ Only two wait-state settings are available (SRW1n = 0b00 and SRW1n = 0b01).
e The number of bits that are assigned to address high byte are fixed.

* The external memory section cannot be divided into sectors with different wait-state
settings.

e Bus Keeper is not available.
e RD, WR, and ALE pins are output only (Port G in ATmega64).

Using the External The interface consists of:
Memory Interface e AD7:0: Multiplexed low-order address bus and data bus.
e A15:8: High-order address bus (configurable number of bits).
e ALE: Address latch enable.
* RD: Read strobe.
e WR: Write strobe.

The control bits for the External Memory Interface are located in three registers, the MCU Con-
trol Register - MCUCR, the External Memory Control Register A — XMCRA, and the External
Memory Control Register B — XMCRB.

When the XMEM interface is enabled, the XMEM interface will override the setting in the Data
Direction Registers that corresponds to the ports dedicated to the XMEM interface. For details
about the port override, see the alternate functions in section “I/O Ports” on page 66. The XMEM
interface will auto-detect whether an access is internal or external. If the access is external, the
XMEM interface will output address, data, and the control signals on the ports according to Fig-
ure 13 (this figure shows the wave forms without wait states). When ALE goes from high-to-low,
there is a valid address on AD7:0. ALE is low during a data transfer. When the XMEM interface
is enabled, also an internal access will cause activity on address-, data- and ALE ports, but the
RD and WR strobes will not toggle during internal access. When the external memory interface
is disabled, the normal pin and data direction settings are used. Note that when the XMEM inter-
face is disabled, the address space above the internal SRAM boundary is not mapped into the
internal SRAM. Figure 12 illustrates how to connect an external SRAM to the AVR using an octal
latch (typically 74 x 573 or equivalent) which is transparent when G is high.

Address Latch Due to the high-speed operation of the XRAM interface, the address latch must be selected with

Requirements care for system frequencies above 8 MHz @ 4V and 4 MHz @ 2.7V. When operating at condi-
tions above these frequencies, the typical old style 74HC series latch becomes inadequate. The
external memory interface is designed in compliance to the 74AHC series latch. However, most
latches can be used as long they comply with the main timing parameters. The main parameters
for the address latch are:

* D to Q propagation delay (t,q).

* Data setup time before G low (t,).

¢ Data (address) hold time after G low (y,).

The external memory interface is designed to guaranty minimum address hold time after G is
asserted low of t, = 5 ns (refer to t aoxx |/t axx st in Table 137 to Table 144 on page 337). The
D to Q propagation delay (t,q) must be taken into consideration when calculating the access time

requirement of the external component. The data setup time before G low (t,,) must not exceed
address valid to ALE low (tay, c) minus PCB wiring delay (dependent on the capacitive load).

| AtmeL 28
2490R-AVR-02/2013

Pull-up and Bus

Keeper

Timing

ATmegab4(L)

Figure 12. External SRAM Connected to the AVR

l\ D[7:0
Ll\] [7:0]
. T\ A
AD7:0 \I—I/ D Q —l/ A[7:0]
ALE > G
AVR SRAM
A15:8 ,l> A[15:8]
"RD > RD
‘WR > WR

The pull-ups on the AD7:0 ports may be activated if the corresponding Port Register is written to
one. To reduce power consumption in sleep mode, it is recommended to disable the pull-ups by
writing the Port Register to zero before entering sleep.

The XMEM interface also provides a Bus Keeper on the AD7:0 lines. The Bus Keeper can be
disabled and enabled in software as described in “XMCRB — External Memory Control Register
B” on page 34. When enabled, the Bus Keeper will ensure a defined logic level (zero or one) on
the AD7:0 bus when these lines would otherwise be tri-stated by the XMEM interface.

External memory devices have different timing requirements. To meet these requirements, the
ATmega64 XMEM interface provides four different wait states as shown in Table 4. It is impor-
tant to consider the timing specification of the external memory device before selecting the wait-
state. The most important parameters are the access time for the external memory compared to
the set-up requirement of the ATmega64. The access time for the external memory is defined to
be the time from receiving the chip select/address until the data of this address actually is driven
on the bus. The access time cannot exceed the time from the ALE pulse is asserted low until
data must be stable during a read sequence (i | g + trign - Iovrn iN Table 137 to Table 144 on
page 337). The different wait states are set up in software. As an additional feature, it is possible
to divide the external memory space in two sectors with individual wait-state settings. This
makes it possible to connect two different memory devices with different timing requirements to
the same XMEM interface. For XMEM interface timing details, please refer to Figure 159 to Fig-
ure 162, and Table 137 to Table 144.

Note that the XMEM interface is asynchronous and that the waveforms in the following figures
are related to the internal system clock. The skew between the internal and external clock
(XTAL1) is not guaranteed (varies between devices, temperature, and supply voltage). Conse-
quently the XMEM interface is not suited for synchronous operation.

| AtmeL 29

2490R-AVR-02/2013

| ATmega64(L)

Figure 13. External Data Memory Cycles without Wait State("
(SRWn1 = 0 and SRWnO0 =0)

. T T2 . T3 . T4

System Clock (CLKgpy) _/__/__/__/__/_

|
|
v. addr. :X

A15:8

S

1

1

1

1

1

: 1
Pre) A
E . E

DA7:0 Prév. data :X Address)@(: Data

! !

1 1

1

|

1

WR

/—‘

DA7:0 (XMBK = 0) Prév. data X Address ((pata |)
T T 1

1

1 1 |

1 1 1 1 1

DA7:0 (XMBK = 1) Prdv. data X Address X XXxXXX X Data | X XXXXXXXX X

Read

Note: 1. SRWn1 =SRW11 (upper sector) or SRWO01 (lower sector), SRWn0 = SRW10 (upper sector) or
SRWO0O0 (lower sector).
The ALE pulse in period T4 is only present if the next instruction accesses the RAM (internal
or external).

Figure 14. External Data Memory Cycles with SRWn1 = 0 and SRWn0 = 1

\ T \ T2 \] i T4 \ 5 |
1 1 1 1 1
System Clock (CLKgp)) \ J \ / /
' ' ' ‘ ' '
| | | ,
ALE _E_/_E—\] '] / '
| : : |
| | | j | -
: . : : ,
A15:8 Prdv. Addr. . . Address \
: X : : : C
. . . j . h o
: . : : \ £
DA7:0 Prév. Data X Address , Data . =
4 X XXX - ; ,
\ . \ j \ '
. . | .
WR : : : V/ v
. . . : .
. . . j . "
: . | . .
DA7:0 (XMBK = 0) _Prdv. Data X Address »————{ pata | o
j . 1 j j 1
1 1 1 1 1 g
DA7:0 (XMBK = 1) Prév. Data , Address | Data | ! 5]
: A D ' : |8
1 1 1 1 1 1
1 1 1 1
RD | : : ‘ V/ :
| | | : |
1 1 1 Ll 1 1 -

Note: 1. SRWn1 =SRW11 (upper sector) or SRW01 (lower sector), SRWn0 = SRW10 (upper sector) or
SRWOO (lower sector).
The ALE pulse in period T5 is only present if the next instruction accesses the RAM (internal
or external).

| AtmeL 30
2490R-AVR-02/2013

| ATmega64(L)

Figure 15. External Data Memory Cycles with SRWn1 = 1 and SRWn0 = 0(")

1 T 1 T2 1 T3 1 T4 N T5 1 T6 :
System Clock (CL|) /__/__/_
Kepu }‘ /./ /f/ A | \ i
i : i : ' . :
ALE ! ! ' ' H i !
: :
A15:8 Prdv. Addr. X | Address | : : X
.) 1 | | 1 . 2
: : =
DA7:0 Prév. Data X Address X::X‘ Data ! ' X E
- X : ! : : |
WR |] i i . . _
1 1 1 ' 1 ' ' |
DA7:0 (XMBK =0) Prév. Data X Address y——— pata | ' ')—.C
} \ H | | \ 1 -
. :
" _ h i I [l 53
DAT:0 (XMBK = 1) _Prdv Data :X Address | X Data : E : X &
| !
RD

Note: 1. SRWn1 =SRW11 (upper sector) or SRWO01 (lower sector), SRWn0 = SRW10 (upper sector) or
SRWOO (lower sector).
The ALE pulse in period T6 is only present if the next instruction accesses the RAM (internal
or external).

Figure 16. External Data Memory Cycles with SRWn1 = 1 and SRWn0 = 1(
| T \ T2 | T3 1 T4 ' T5 | T6 1 T7 |

.

. : . : . . . _
A15:8 Prbv. Addr. X ! Address | ' , , X:
j \ j j j J i : 2
DA7:0 Prgv. Data XAddress 1 Data H ' ' ' =
a laress Yool ; : ; : X
WA | ' ' ' ' ! ! !
: : I\ : ; :/ i -
1 1 1 il 1 ! ! —
DA7:0 (XMBK = 0) Prbv. Data X Address \—+—{{ Data | ' D) ; (
' ' ' . : ' | I
. N . N . L ' e
DA7:0 (XMBK =1) Prkv. Data D(Address | X Data | ! , . X: 2
' . ' . . ' I I
o : : : ' ' . .
RD | ' A\ . :)/ : :

Note: 1. SRWn1=SRW11 (upper sector) or SRWO01 (lower sector), SRWn0 = SRW10 (upper sector) or
SRWOO (lower sector).
The ALE pulse in period T7 is only present if the next instruction accesses the RAM (internal
or external).

| AtmeL 31
2490R-AVR-02/2013

| ATmega64(L)

XMEM Register
Description

MCUCR - MCU
Control Register

XMCRA - External

Bit 7 6 5 4 3 2 1 0
0x35 (0x55) I SRE SRW10 SE SM1 SMO0 SM2 IVSEL IVCE I MCUCR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7 — SRE: External SRAM/XMEM Enable

Writing SRE to one enables the External Memory Interface.The pin functions AD7:0, A15:8,
ALE, WR, and RD are activated as the alternate pin functions. The SRE bit overrides any pin
direction settings in the respective data direction registers. Writing SRE to zero, disables the
External Memory Interface and the normal pin and data direction settings are used.

* Bit 6 — SRW10: Wait State Select Bit

For a detailed description in non ATmega103 compatibility mode, see common description for
the SRWn bits below (XMRA description). In ATmega103 compatibility mode, writing SRW10 to
one enables the wait state and one extra cycle is added during read/write strobe as shown in
Figure 14.

Memory Control Bit 7 6 5 4 3 2 ! 0
Register A (0x6D) I - SRL2 SRL1 SRLO SRWO01 SRWO00 SRW11 - I XMCRA
Read/Write R R/W R/W R/W R/W R/W R/W R
Initial Value 0 0 0 0 0 0 0 0
e Bit 7 — Res: Reserved Bit
This is a reserved bit and will always read as zero. When writing to this address location, write
this bit to zero for compatibility with future devices.
e Bit 6..4 — SRL2, SRL1, SRLO: Wait State Sector Limit
It is possible to configure different wait states for different external memory addresses. The
external memory address space can be divided in two sectors that have separate wait-state bits.
The SRL2, SRL1, and SRLO bits select the split of the sectors, see Table 3 and Figure 11. By
default, the SRL2, SRL1, and SRLO bits are set to zero and the entire external memory address
space is treated as one sector. When the entire SRAM address space is configured as one sec-
tor, the wait states are configured by the SRW11 and SRW10 bits.
| Atme[32

2490R-AVR-02/2013

| ATmega64(L)

Table 3. Sector Limits with Different Settings of SRL2..0

SRL2 SRLA1 SRLO Sector Limits
0 0 0 Lower sector = N/A
Upper sector = 0x1100 - OxFFFF
0 0 1 Lower sector = 0x1100 - Ox1FFF
Upper sector = 0x2000 - OxFFFF
0 1 0 Lower sector = 0x1100 - Ox3FFF
Upper sector = 0x4000 - OxFFFF
0 1 1 Lower sector = 0x1100 - OX5FFF
Upper sector = 0x6000 - OxFFFF
1 0 0 Lower sector = 0x1100 - OX7FFF
Upper sector = 0x8000 - OxFFFF
1 0 1 Lower sector = 0x1100 - OX9FFF
Upper sector = 0xA000 - OxFFFF
1 1 0 Lower sector = 0x1100 - OXxBFFF
Upper sector = 0xC000 - OxFFFF
1 1 1 Lower sector = 0x1100 - OXDFFF
Upper sector = 0XEO0O - OxFFFF

e Bit 1 and Bit 6 MCUCR - SRW11, SRW10: Wait State Select Bits for Upper Sector

The SRW11 and SRW10 bits control the number of wait states for the upper sector of the exter-
nal memory address space, see Table 4.

¢ Bit 3..2 - SRW01, SRW00: Wait State Select Bits for Lower Sector

The SRWO01 and SRWO0O bits control the number of wait states for the lower sector of the exter-
nal memory address space, see Table 4.

Table 4. Wait States("
SRWn1 | SRWn0 | Wait States

0 0 No wait states
0 1 Wait one cycle during read/write strobe
1 0 Wait two cycles during read/write strobe

Wait two cycles during read/write and wait one cycle before driving out

1 1 new address

Note: 1. n=0or 1 (lower/upper sector).
For further details of the timing and wait states of the External Memory Interface, see Figure
13 to Figure 16 how the setting of the SRW bits affects the timing.

¢ Bit 0 — Res: Reserved Bit

This is a reserved bit and will always read as zero. When writing to this address location, write
this bit to zero for compatibility with future devices.

| AtmeL 33
2490R-AVR-02/2013

| ATmega64(L)

XMCRB - External

Memory Control Bit U 5 S 4 3 2 L 0
Register B (0x6C) | xwmBk - - XMM2 XMMA1 XMMO | XMCRB
Read/Write R/W R R R R RIW R/W R/IW
Initial Value 0 0 0 0 0 0 0 0
e Bit 7 - XMBK: External Memory Bus Keeper Enable
Writing XMBK to one enables the Bus Keeper on the AD7:0 lines. When the Bus Keeper is
enabled, it will ensure a defined logic level (zero or one) on AD7:0 when they would otherwise
be tri-stated. Writing XMBK to zero disables the Bus Keeper. XMBK is not qualified with SRE, so
even if the XMEM interface is disabled, the Bus Keepers are still activated as long as XMBK is
one.
¢ Bit 6..3 — Res: Reserved Bits
These are reserved bits and will always read as zero. When writing to this address location,
write these bits to zero for compatibility with future devices.
¢ Bit 2..0 - XMM2, XMM1, XMMO: External Memory High Mask
When the External Memory is enabled, all Port C pins are default used for the high address byte.
If the full 60 Kbytes address space is not required to access the external memory, some, or all,
Port C pins can be released for normal port pin function as described in Table 5. As described in
“Using all 64Kbytes Locations of External Memory” on page 36, it is possible to use the XMMn
bits to access all 64 Kbytes locations of the external memory.
Table 5. Port C Pins Released as Normal Port Pins when the External Memory is Enabled
XMM2 | XMM1 | XMMO | # Bits for External Memory Address Released Port Pins
0 0 0 8 (Full 60 Kbytes space) None
0 0 1 7 PC7
0 1 0 6 PC7 - PC6
0 1 1 5 PC7 - PC5
1 0 0 4 PC7 - PC4
1 0 1 3 PC7 - PC3
1 1 0 2 PC7 - PC2
1 1 1 No Address high bits Full Port C
|
Atmel 34

2490R-AVR-02/2013

| ATmega64(L)

Using all Locations of
External Memory
Smaller than 64

Since the external memory is mapped after the internal memory as shown in Figure 11, the
external memory is not addressed when addressing the first 4,352 bytes of data space. It may
appear that the first 4,352 bytes of the external memory are inaccessible (external memory

Kbytes addresses 0x0000 to 0x10FF). However, when connecting an external memory smaller than 64
Kbytes, for example 32 Kbytes, these locations are easily accessed simply by addressing from
address 0x8000 to 0x90FF. Since the External Memory Address bit A15 is not connected to the
external memory, addresses 0x8000 to 0x90FF will appear as addresses 0x0000 to 0x10FF for
the external memory. Addressing above address 0x90FF is not recommended, since this will
address an external memory location that is already accessed by another (lower) address. To
the Application software, the external 32 Kbytes memory will appear as one linear 32 Kbytes
address space from 0x1100 to Ox90FF. This is illustrated in Figure 17. Memory configuration B
refers to the ATmega103 compatibility mode, configuration A to the non-compatible mode.
When the device is set in ATmegai03 compatibility mode, the internal address space is 4,096
bytes. This implies that the first 4,096 bytes of the external memory can be accessed at
addresses 0x8000 to Ox8FFF. To the Application software, the external 32 Kbytes memory will
appear as one linear 32 Kbytes address space from 0x1000 to Ox8FFF.

Figure 17. Address Map with 32 Kbytes External Memory
Memory Configuration A Memory Configuration B

0x0000 0x0000 0x0000 0x0000

Internal Memory oxoFFF | Internal Memory OXOFEF
oxtorF | _____ | JL______ Ox10FF USTCoRN i A 0x1000
0x1100 0x1100
oxrrrF | _Extenal OXTFFF ox7FFF | _Extemal OXTFFE
0x8000 Memory 0x8000 Memory
Ox90FF |_ _ _ _ _ _ _ oxeFrf |
0x9100 0x9000

(Unused) (Unused)
OXFFFF OXFFFF
|
Atmel 35

2490R-AVR-02/2013

| ATmega64(L)

Using all 64Kbytes
Locations of External
Memory

Since the external memory is mapped after the internal memory as shown in Figure 11, only 60
Kbytes of external memory is available by default (address space 0x0000 to 0x10FF is reserved
for internal memory). However, it is possible to take advantage of the entire external memory by
masking the higher address bits to zero. This can be done by using the XMMn bits and con-
trolled by software the most significant bits of the address. By setting Port C to output 0x00, and
releasing the most significant bits for normal Port Pin operation, the Memory Interface will

address 0x0000 - Ox1FFF. See code examples below.

Assembly Code Example("

; OFFSET is defined to 0x2000 to ensure

; external memory access

; Configure Port C (address high byte) to
; output 0x00 when the pins are released
; for normal Port Pin operation

1d4i rlée, OxFF

out DDRC, rlé6

1di rl6, 0x00

out PORTC, rlé6

; release PC7:5

1di rl6, (l<<XMM1) | (1<<XMMO)

sts XMCRB, rlé6

; write OxAA to address 0x0001 of external
; memory

1di rl6, Oxaa

sts 0x0001+OFFSET, rlé6

; re-enable PC7:5 for external memory
1di rl6, (0<<XMM1) | (0<<XMMO)

sts XMCRB, rlé6

; store 0x55 to address (OFFSET + 1) of
; external memory

1di rle, 0x55

sts 0x0001+OFFSET, rlé6

C Code Example"

#define OFFSET 0x2000

void XRAM_example (void)

{

unsigned char *p = (unsigned char *) (OFFSET + 1);

DDRC = OxFF;
PORTC = 0x00;

XMCRB = (1<<XMM1) | (1<<XMMO) ;
*p = Oxaa;
XMCRB = 0x00;

*p = 0x55;
}

Note: 1. See “About Code Examples” on page 9.

Care must be exercised using this option as most of the memory is masked away.

| /ltmeL

2490R-AVR-02/2013

36

| ATmega64(L)

System Clock

and Clock
Options
Clock Systems Figure 18 presents the principal clock systems in the AVR and their distribution. All of the clocks
and their need not be active at a given time. In order to reduce power consumption, the clocks to modules
Distribution not being used can be halted by using different sleep modes, as described in “Power Manage-
ment and Sleep Modes” on page 46. The clock systems are detailed below.
Figure 18. Clock Distribution
A h G 11/0 Flash and
Timer/Gounter Modules ADG GPU Core RAM EEPROM
| Y i Y Y Y L1
clkype
clkyo AVR Clock clkgpy
Control Unit
ClkASY C|kFLASH
Y Y
Reset Logic Watchdog Timer
P 1)
Source Clock Watchdog Clock
/ Clock \ Watchdog
Multiplexer Oscillator
W W}
Timer/C E IRC C | Low-f Calibrated RC
Oucitor || Oscllator External Glock Oschiaor || Gryetal Osatiatr || Oselator
CPU Clock - clkcpy The CPU clock is routed to parts of the system concerned with operation of the AVR core.
Examples of such modules are the General Purpose Register File, the Status Register and the
data memory holding the Stack Pointer. Halting the CPU clock inhibits the core from performing
general operations and calculations.
I/0 Clock - clko The 1/O clock is used by the majority of the 1/0 modules, like Timer/Counters, SPI, and USART.

The I/O clock is also used by the External Interrupt module, but note that some external inter-
rupts are detected by asynchronous logic, allowing such interrupts to be detected even if the I/O
clock is halted. Also note that address recognition in the TWI module is carried out asynchro-
nously when clkq is halted, enabling TWI address reception in all sleep modes.

Flash Clock — clkg oy The Flash clock controls operation of the Flash interface. The Flash clock is usually active simul-
taneously with the CPU clock.

| AtmeL 37

2490R-AVR-02/2013

| ATmega64(L)

Asynchronous Timer

Clock Sources

The Asynchronous Timer clock allows the Asynchronous Timer/Counter to be clocked directly
from an external 32 kHz clock crystal. The dedicated clock domain allows using this
Timer/Counter as a real-time counter even when the device is in sleep mode.

The ADC is provided with a dedicated clock domain. This allows halting the CPU and I/O clocks
in order to reduce noise generated by digital circuitry. This gives more accurate ADC conversion
results.

The device has the following clock source options, selectable by Flash Fuse bits as shown
below. The clock from the selected source is input to the AVR clock generator, and routed to the
appropriate modules.

Table 6. Device Clocking Options Select(")

Device Clocking Option CKSELS3..0
External Crystal/Ceramic Resonator 1111 -1010
External Low-frequency Crystal 1001
External RC Oscillator 1000 - 0101
Calibrated Internal RC Oscillator 0100 - 0001
External Clock 0000

Note: 1. For all fuses “1” means unprogrammed while “0” means programmed.

The various choices for each clocking option is given in the following sections. When the CPU
wakes up from Power-down or Power-save, the selected clock source is used to time the start-
up, ensuring stable Oscillator operation before instruction execution starts. When the CPU starts
from reset, there is as an additional delay allowing the power to reach a stable level before com-
mencing normal operation. The Watchdog Oscillator is used for timing this real-time part of the
start-up time. The number of WDT Oscillator cycles used for each time-out is shown in Table 7.
The frequency of the Watchdog Oscillator is voltage dependent as shown in the “Typical Char-
acteristics — TA = -40°C to 85°C” on page 342.

Table 7. Number of Watchdog Oscillator Cycles

Typ Time-out (V¢ = 5.0V) Typ Time-out (V¢ = 3.0V) Number of Cycles
41 ms 4.3 ms 4K (4,096)
65 ms 69 ms 64K (65,536)
|
Atmel 38

2490R-AVR-02/2013

| ATmega64(L)

XDIV - XTAL Divide The XTAL Divide Control Register is used to divide the source clock frequency by a number in
Control Register the range 2 - 129. This feature can be used to decrease power consumption when the require-
ment for processing power is low.

Bit 7 6 5 4 3 2 1 0
0x3C (0x5C) | XDIVEN | XDIV6 | XDIV5 | XDIV4 | XDIV3 | XDIV2 | XDIV1 Xpivo | xpiv
Read/Write R/W R/W RIW RIW RIW R/W R/W RIW
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7 — XDIVEN: XTAL Divide Enable

When the XDIVEN bit is written one, the clock frequency of the CPU and all peripherals (clk,o,
Clkapc, Clkcpys ClKe agh) is divided by the factor defined by the setting of XDIV6 - XDIVO. This bit
can be written run-time to vary the clock frequency as suitable to the application.

* Bits 6..0 — XDIV6..XDIVO: XTAL Divide Select Bits 6 - 0

These bits define the division factor that applies when the XDIVEN bit is set (one). If the value of
these bits is denoted d, the following formula defines the resulting CPU and peripherals clock
frequency f:

_ Source clock
Jow = “Hoe-a

The value of these bits can only be changed when XDIVEN is zero. When XDIVEN is written to
one, the value written simultaneously into XDIV6..XDIVO is taken as the division factor. When
XDIVEN is written to zero, the value written simultaneously into XDIV6..XDIVO is rejected. As
the divider divides the master clock input to the MCU, the speed of all peripherals is reduced
when a division factor is used.

Note: When the system clock is divided, Timer/CounterQ can be used with Asynchronous clock only. The

frequency of the asynchronous clock must be lower than 1/4th of the frequency of the scaled down
Source clock. Otherwise, interrupts may be lost, and accessing the Timer/Counter0 registers may

fail.
Default Clock The device is shipped with CKSEL = “0001” and SUT = “10”. The default clock source setting is
Source therefore the Internal RC Oscillator with longest startup time. This default setting ensures that all

users can make their desired clock source setting using an In-System or Parallel Programmer.

Crystal Oscillator XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be con-
figured for use as an On-chip Oscillator, as shown in Figure 19. Either a quartz crystal or a
ceramic resonator may be used. The CKOPT Fuse selects between two different Oscillator
amplifier modes. When CKOPT is programmed, the Oscillator output will oscillate a full rail-to-
rail swing on the output. This mode is suitable when operating in a very noisy environment or
when the output from XTAL2 drives a second clock buffer. This mode has a wide frequency
range. When CKOPT is unprogrammed, the Oscillator has a smaller output swing. This reduces
power consumption considerably. This mode has a limited frequency range and it cannot be
used to drive other clock buffers.

For resonators, the maximum frequency is 8 MHz with CKOPT unprogrammed and 16 MHz with
CKOPT programmed. C1 and C2 should always be equal for both crystals and resonators. The
optimal value of the capacitors depends on the crystal or resonator in use, the amount of stray
capacitance, and the electromagnetic noise of the environment. Some initial guidelines for
choosing capacitors for use with crystals are given in Table 8. For ceramic resonators, the
capacitor values given by the manufacturer should be used.

| AtmeL 39
2490R-AVR-02/2013

| ATmega64(L)

Figure 19. Crystal Oscillator Connections

c2

Py XTAL2
5
Sl xTAL

GND

The Oscillator can operate in three different modes, each optimized for a specific frequency
range. The operating mode is selected by the fuses CKSELS3..1 as shown in Table 8.

Table 8. Crystal Oscillator Operating Modes

Frequency Range Recommended Range for Capacitors
CKOPT CKSELS3..1 (MHz) C1 and C2 for Use with Crystals (pF)
1 101 0.4-0.9 -
1 110 0.9-3.0 12-22
1 111 3.0-8.0 12-22
0 101, 110, 111 1.0- 12-22
Note: 1. This option should not be used with crystals, only with ceramic resonators.

The CKSELO Fuse together with the SUT1..0 Fuses select the start-up times as shown in Table

9.

| /ltmeL

2490R-AVR-02/2013

40

| ATmega64(L)

Table 9. Start-up Times for the Crystal Oscillator Clock Selection

Start-up Time from Additional Delay
Power-down and from Reset
CKSELO | SUT1..0 Power-save (Ve =5.0V) Recommended Usage

0 00 258 CK(" 41 ms C_e_ramlc resonator, fast
rising power

0 01 258 CK(") 65 ms Ceramic resonator,
slowly rising power

0 10 1K CK®@ _ Ceramic resonator, BOD
enabled

0 11 1K CK®@ 41 ms Qgramlc resonator, fast
rising power

1 00 1K CK® 65 ms Ceramnc; resonator,
slowly rising power

1 01 16K CK _ Crystal Oscillator, BOD
enabled

1 10 16K CK 41ms erstal Oscillator, fast
rising power

1 11 16K CK 65 ms C_)r_ystal Oscillator, slowly
rising power

Notes: 1. These options should only be used when not operating close to the maximum frequency of the
device, and only if frequency stability at start-up is not important for the application. These
options are not suitable for crystals.

2. These options are intended for use with ceramic resonators and will ensure frequency stability
at start-up. They can also be used with crystals when not operating close to the maximum fre-
quency of the device, and if frequency stability at start-up is not important for the application.

Low-frequency To use a 32.768 kHz watch crystal as the clock source for the device, the Low-frequency crystal

Crystal Oscillator Oscillator must be selected by setting the CKSEL Fuses to “1001”. The crystal should be con-
nected as shown in Figure 19. By programming the CKOPT Fuse, the user can enable internal
capacitors on XTAL1 and XTAL2, thereby removing the need for external capacitors. The inter-
nal capacitors have a nominal value of 36 pF.

When this Oscillator is selected, start-up times are determined by the SUT Fuses as shown in

Table 10.
Table 10. Start-up Times for the Low-frequency Crystal Oscillator Clock Selection
Start-up Time Additional Delay
from Power-down from Reset
SUT1..0 and Power-save (Vg = 5.0V) Recommended Usage

00 1K CK™ 41ms Fast rising power or BOD enabled
01 1K CK™ 65 ms Slowly rising power
10 32K CK 65 ms Stable frequency at start-up
11 Reserved

Note: 1. These options should only be used if frequency stability at start-up is not important for the
application.

| /ltmeL 41

2490R-AVR-02/2013

| ATmega64(L)

External RC For timing insensitive applications, the external RC configuration shown in Figure 20 can be

Oscillator used. The frequency is roughly estimated by the equation f = 1/(3RC). C should be at least 22
pF. By programming the CKOPT Fuse, the user can enable an internal 36 pF capacitor between
XTAL1 and GND, thereby removing the need for an external capacitor.

Figure 20. External RC Configuration

VCC
R NC——— XTAL2
t XTAL1
C

j GND

The Oscillator can operate in four different modes, each optimized for a specific frequency
range. The operating mode is selected by the fuses CKSEL3..0 as shown in Table 11.

Table 11. External RC Oscillator Operating Modes

CKSEL3..0 Frequency Range (MHz)
0101 0.1-0.9
0110 0.9-3.0
0111 3.0-8.0
1000 8.0-12.0
When this Oscillator is selected, start-up times are determined by the SUT Fuses as shown in
Table 12.
Table 12. Start-up Times for the External RC Oscillator Clock Selection
Start-up Time from Additional Delay
Power-down and from Reset
SUT1..0 Power-save (Ve =5.0V) Recommended Usage
00 18 CK - BOD enabled
01 18 CK 41 ms Fast rising power
10 18 CK 65 ms Slowly rising power
11 6 CKM 41ms Fast rising power or BOD enabled

Note: 1. This option should not be used when operating close to the maximum frequency of the device.

| /ltmeL 42

2490R-AVR-02/2013

| ATmega64(L)

Calibrated Internal The calibrated internal RC Oscillator provides a fixed 1.0 MHz, 2.0 MHz, 4.0 MHz, or 8.0 MHz

RC Oscillator clock. All frequencies are nominal values at 5V and 25°C. This clock may be selected as the
system clock by programming the CKSEL Fuses as shown in Table 13. If selected, it will operate
with no external components. The CKOPT Fuse should always be unprogrammed when using
this clock option. During reset, hardware loads the calibration byte into the OSCCAL Register
and thereby automatically calibrates the RC Oscillator. At 5V, 25°C and 1.0 MHz Oscillator fre-
quency selected, this calibration gives a frequency within £3% of the nominal frequency. Using
run-time calibration methods as described in application notes available at www.atmel.com/avr it
is possible to achieve +1% accuracy at any given V. and Temperature. When this Oscillator is
used as the chip clock, the Watchdog Oscillator will still be used for the Watchdog Timer and for
the Reset Time-out. For more information on the preprogrammed calibration value, see the sec-
tion “Calibration Byte” on page 293.

Table 13. Internal Calibrated RC Oscillator Operating Modes

CKSEL3..0 Nominal Frequency (MHz)
0001 1.0
0010 2.0
0011 4.0
0100 8.0

Note: 1. The device is shipped with this option selected.

When this Oscillator is selected, start-up times are determined by the SUT Fuses as shown in
Table 14. XTAL1 and XTAL2 should be left unconnected (NC).

Table 14. Start-up Times for the Internal Calibrated RC Oscillator Clock Selection

Start-up Time from Power- | Additional Delay from
SUT1..0 down and Power-save Reset (V¢ = 5.0V) Recommended Usage
00 6 CK - BOD enabled
01 6 CK 4.1 ms Fast rising power
100 6 CK 65 ms Slowly rising power
11 Reserved

Note: 1. The device is shipped with this option selected.

OSCCAL - Oscillator

Calibration Register(') Bt U 6 5 4 3 2 ! 0
(0x6F) | CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CALO | OSCCAL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/IW
Initial Value Device Specific Calibration Value

Note: 1. The OSCCAL Register is not available in ATmega103 compatibility mode.

¢ Bits 7..0 — CAL7..0: Oscillator Calibration Value

Writing the calibration byte to this address will trim the internal Oscillator to remove process vari-
ations from the Oscillator frequency. During Reset, the 1 MHz calibration value which is located
in the signature row high byte (address 0x00) is automatically loaded into the OSCCAL Register.
If the internal RC is used at other frequencies, the calibration values must be loaded manually.
This can be done by first reading the signature row by a programmer, and then store the calibra-
tion values in the Flash or EEPROM. Then the value can be read by software and loaded into
the OSCCAL Register. When OSCCAL is zero, the lowest available frequency is chosen. Writing

| AtmeL 43

2490R-AVR-02/2013

| ATmega64(L)

non-zero values to this register will increase the frequency of the internal Oscillator. Writing
OxFF to the register gives the highest available frequency. The calibrated Oscillator is used to
time EEPROM and Flash access. If EEPROM or Flash is written, do not calibrate to more than
10% above the nominal frequency. Otherwise, the EEPROM or Flash write may fail. Note that
the Oscillator is intended for calibration to 1.0 MHz, 2.0 MHz, 4.0 MHz, or 8.0 MHz. Tuning to
other values is not guaranteed, as indicated in Table 15.

Table 15. Internal RC Oscillator Frequency Range

OSCCAL Value

Min Frequency in Percentage of
Nominal Frequency (%)

Max Frequency in Percentage of
Nominal Frequency (%)

0x00 50 100
Ox7F 75 150
OXFF 100 200
External Clock To drive the device from an external clock source, XTAL1 should be driven as shown in Figure

21. To run the device on an external clock, the CKSEL Fuses must be programmed to “0000”.
By programming the CKOPT Fuse, the user can enable an internal 36 pF capacitor between
XTAL1 and GND.

Figure 21. External Clock Drive Configuration

NC XTAL2
EXTERNAL
CLOCK XTALA1
SIGNAL

When this clock source is selected, start-up times are determined by the SUT Fuses as shown in

Table 16.

Table 16. Start-up Times for the External Clock Selection

Start-up Time from Power-

Additional Delay from

SUT1..0 down and Power-save Reset (Voc =5.0 V) Recommended Usage
00 6 CK - BOD enabled
01 6 CK 41 ms Fast rising power
10 6 CK 65 ms Slowly rising power
11 Reserved

When applying an external clock, it is required to avoid sudden changes in the applied clock fre-
quency to ensure stable operation of the MCU. A variation in frequency of more than 2% from
one clock cycle to the next can lead to unpredictable behavior. It is required to ensure that the
MCU is kept in Reset during such changes in the clock frequency.

| /ltmeL

2490R-AVR-02/2013

44

| ATmega64(L)

Timer/Counter For AVR microcontrollers with Timer/Counter Oscillator pins (TOSC1 and TOSC2), the crystal is
connected directly between the pins. No external capacitors are needed. The Oscillator is opti-

Oscillator
mized for use with a 32.768 kHz watch crystal. Applying an external clock source to TOSC1 is
not recommended.
Note: The Timer/Counter Oscillator uses the same type of crystal oscillator as Low-Frequency Oscillator
and the internal capacitors have the same nominal value of 36 pF.
|
Atmel 45

2490R-AVR-02/2013

| ATmega64(L)

Power
Management
and Sleep
Modes

MCUCR - MCU
Control Register

Sleep modes enable the application to shut down unused modules in the MCU, thereby saving
power. The AVR provides various sleep modes allowing the user to tailor the power consump-
tion to the application’s requirements.

To enter any of the six sleep modes, the SE-bit in MCUCR must be written to logic one and a
SLEEP instruction must be executed. The SM2, SM1, and SMO bits in the MCUCR Register
select which sleep mode (ldle, ADC Noise Reduction, Power-down, Power-save, Standby, or
Extended Standby) will be activated by the SLEEP instruction. See Table 17 for a summary. If
an enabled interrupt occurs while the MCU is in a sleep mode, the MCU wakes up. The MCU is
then halted for four cycles in addition to the start-up time, it executes the interrupt routine, and
resumes execution from the instruction following SLEEP. The contents of the Register File and
SRAM are unaltered when the device wakes up from sleep. If a reset occurs during sleep mode,
the MCU wakes up and executes from the Reset Vector.

Figure 18 on page 37 presents the different clock systems in the ATmega64, and their distribu-
tion. This figure is helpful in selecting an appropriate sleep mode.

The MCU Control Register contains control bits for power management.

Bit 7 6 5 4 3 2 1 0
0x35(0x55) | SRE | SRW10 | SE | SM1 | sMo | SM2 | IVSEL | IVCE | MCUCR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 5 — SE: Sleep Enable

The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP
instruction is executed. To avoid the MCU entering the sleep mode unless it is the programmers
purpose, it is recommended to write the Sleep Enable (SE) bit to one just before the execution of
the SLEEP instruction and to clear it immediately after waking up.

¢ Bits 4..2 - SM2..0: Sleep Mode Select Bits 2, 1, and 0

These bits select between the six available sleep modes as shown in Table 17.

Table 17. Sleep Mode Select

SM2 SM1 SMo Sleep Mode
0 0 0 Idle
0 0 1 ADC Noise Reduction
0 1 0 Power-down
0 1 1 Power-save
1 0 0 Reserved
1 0 1 Reserved
1 1 0 Standby("
1 1 1 Extended Standby"
Note: 1. Standby mode and Extended Standby mode are only available with external crystals or
resonators.
| AtmeL 46

2490R-AVR-02/2013

| ATmega64(L)

Idle Mode When the SM2..0 bits are written to 000, the SLEEP instruction makes the MCU enter Ildle
mode, stopping the CPU but allowing SPI, USART, Analog Comparator, ADC, Two-wire Serial
Interface, Timer/Counters, Watchdog, and the interrupt system to continue operating. This sleep
mode basically halts clkgp, and clkg 4gn, While allowing the other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as internal
ones like the Timer Overflow and USART Transmit Complete interrupts. If wake-up from the
Analog Comparator interrupt is not required, the Analog Comparator can be powered down by
setting the ACD bit in the Analog Comparator Control and Status Register — ACSR. This will
reduce power consumption in Idle mode. If the ADC is enabled, a conversion starts automati-
cally when this mode is entered.

ADC Noise When the SM2..0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC

Reduction Mode Noise Reduction mode, stopping the CPU but allowing the ADC, the external interrupts, the
Two-wire Serial Interface address watch, Timer/Counter0 and the Watchdog to continue operat-
ing (if enabled). This sleep mode basically halts clkq, Cclkgpy, and clk-g agy, While allowing the
other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measurements. If
the ADC is enabled, a conversion starts automatically when this mode is entered. Apart form the
ADC Conversion Complete interrupt, only an External Reset, a Watchdog Reset, a Brown-out
Reset, a Two-wire Serial Interface address match interrupt, a Timer/Counter0O interrupt, an
SPM/EEPROM ready interrupt, an external level interrupt on INT7:4, or an External Interrupt on
INT3:0 can wake up the MCU from ADC Noise Reduction mode.

Power-down Mode When the SM2..0 bits are written to 010, the SLEEP instruction makes the MCU enter Power-
down mode. In this mode, the external Oscillator is stopped, while the external interrupts, the
Two-wire Serial Interface address watch, and the Watchdog continue operating (if enabled).
Only an External Reset, a Watchdog Reset, a Brown-out Reset, a Two-wire Serial Interface
address match interrupt, an external level interrupt on INT7:4, or an External Interrupt on INT3:0
can wake up the MCU. This sleep mode basically halts all generated clocks, allowing operation
of asynchronous modules only.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed
level must be held for some time to wake up the MCU. Refer to “External Interrupts” on page 90
for details.

When waking up from Power-down mode, there is a delay from the wake-up condition occurs
until the wake-up becomes effective. This allows the clock to restart and become stable after
having been stopped. The wake-up period is defined by the same CKSEL Fuses that define the
Reset Time-out period, as described in “Clock Sources” on page 38.

Power-save Mode When the SM2..0 bits are written to 011, the SLEEP instruction makes the MCU enter Power-
save mode. This mode is identical to Power-down, with one exception:

If Timer/Counter0 is clocked asynchronously (that is, the ASO bit in ASSR is set),
Timer/Counter0 will run during sleep. The device can wake up from either Timer Overflow or
Output Compare event from Timer/Counter0 if the corresponding Timer/Counter0 interrupt
enable bits are set in TIMSK, and the Global Interrupt Enable bit in SREG is set.

If the asynchronous timer is NOT clocked asynchronously, Power-down mode is recommended
instead of Power-save mode because the contents of the registers in the asynchronous timer
should be considered undefined after wake-up in Power-save mode if ASO is 0.

This sleep mode basically halts all clocks except clk,gy, allowing operation only of asynchronous
modules, including Timer/Counter0 if clocked asynchronously.

| /| t m eL 47
2490R-AVR-02/2013

| ATmega64(L)

Standby Mode When the SM2..0 bits are 110 and an external crystal/resonator clock option is selected, the
SLEEP instruction makes the MCU enter Standby mode. This mode is identical to Power-down
with the exception that the Oscillator is kept running. From Standby mode, the device wakes up
in six clock cycles.

Extended Standby When the SM2..0 bits are 111 and an external crystal/resonator clock option is selected, the

Mode SLEEP instruction makes the MCU enter Extended Standby mode. This mode is identical to
Power-save mode with the exception that the Oscillator is kept running. From Extended Standby
mode, the device wakes up in six clock cycles.

Table 18. Active Clock Domains and Wake Up Sources in the Different Sleep Modes

Active Clock Domains Oscillators Wake Up Sources
=
T ° © [] o)
5 2 o > g . 2o S < = -~ .
Sieep 5 & 2 £ Z2|§8z% 248 s5s & E§% | 2.
Mode © © © © © S0 FOW |—Z| F<= ~ »uwo o=
Idle X X X X X@ X X X X X | X
ADC
Noise X X X X@ X® X X X X
Reduction
doun X9 | X
S":\‘:‘éer' X@ x@ | x@ X X@
Standby!" X X® X
Extended
Standby " X@) X X@) X®) X X
Notes: 1. External Crystal or resonator selected as clock source.
2. If ASO bit in ASSR is set.
3. Only INT3:0 or level interrupt INT7:4.
|
Atmel 48

2490R-AVR-02/2013

| ATmega64(L)

Minimizing Power
Consumption

Analog to Digital
Converter

Analog Comparator

Brown-out Detector

Internal Voltage
Reference

Watchdog Timer

Port Pins

There are several issues to consider when trying to minimize the power consumption in an AVR
controlled system. In general, sleep modes should be used as much as possible, and the sleep
mode should be selected so that as few as possible of the device’s functions are operating. All
functions not needed should be disabled. In particular, the following modules may need special
consideration when trying to achieve the lowest possible power consumption.

If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be dis-
abled before entering any sleep mode. When the ADC is turned off and on again, the next
conversion will be an extended conversion. Refer to “Analog to Digital Converter” on page 230
for details on ADC operation.

When entering ldle mode, the Analog Comparator should be disabled if not used. When entering
ADC Noise Reduction mode, the Analog Comparator should be disabled. In the other sleep
modes, the Analog Comparator is automatically disabled. However, if the Analog Comparator is
set up to use the internal voltage reference as input, the Analog Comparator should be disabled
in all sleep modes. Otherwise, the internal voltage reference will be enabled, independent of
sleep mode. Refer to “Analog Comparator” on page 227 for details on how to configure the Ana-
log Comparator.

If the Brown-out Detector is not needed in the application, this module should be turned off. If the
Brown-out Detector is enabled by the BODEN Fuse, it will be enabled in all sleep modes, and
hence, always consume power. In the deeper sleep modes, this will contribute significantly to
the total current consumption. Refer to “Brown-out Detector” on page 49 for details on how to
configure the Brown-out Detector.

The internal voltage reference will be enabled when needed by the Brown-out Detector, the Ana-
log Comparator or the ADC. If these modules are disabled as described in the sections above,
the internal voltage reference will be disabled and it will not be consuming power. When turned
on again, the user must allow the reference to start up before the output is used. If the reference
is kept on in sleep mode, the output can be used immediately. Refer to “Internal Voltage Refer-
ence” on page 56 for details on the start-up time.

If the Watchdog Timer is not needed in the application, this module should be turned off. If the
Watchdog Timer is enabled, it will be enabled in all sleep modes, and hence, always consume
power. In the deeper sleep modes, this will contribute significantly to the total current consump-
tion. Refer to “Watchdog Timer” on page 56 for details on how to configure the Watchdog Timer.

When entering a sleep mode, all port pins should be configured to use minimum power. The
most important thing is then to ensure that no pins drive resistive loads. In sleep modes where
the both the I/O clock (clk;g) and the ADC clock (clkapc) are stopped, the input buffers of the
device will be disabled. This ensures that no power is consumed by the input logic when not
needed. In some cases, the input logic is needed for detecting wake-up conditions, and it will
then be enabled. Refer to the section “Digital Input Enable and Sleep Modes” on page 70 for
details on which pins are enabled. If the input buffer is enabled and the input signal is left floating
or have an analog signal level close to V/2, the input buffer will use excessive power.

| /ltmeL 49

2490R-AVR-02/2013

| ATmega64(L)

JTAG Interface and
On-chip Debug
System

If the On-chip debug system is enabled by the OCDEN Fuse and the chip enter Power down or
Power save sleep mode, the main clock source remains enabled. In these sleep modes, this will
contribute significantly to the total current consumption. There are three alternative ways to
avoid this:

e Disable OCDEN Fuse.
e Disable JTAGEN Fuse.
e Write one to the JTD bit in MCUCSR.

The TDO pin is left floating when the JTAG interface is enabled while the JTAG TAP controller is
not shifting data. If the hardware connected to the TDO pin does not pull up the logic level,
power consumption will increase. Note that the TDI pin for the next device in the scan chain con-
tains a pull-up that avoids this problem. Writing the JTD bit in the MCUCSR register to one or
leaving the JTAG fu