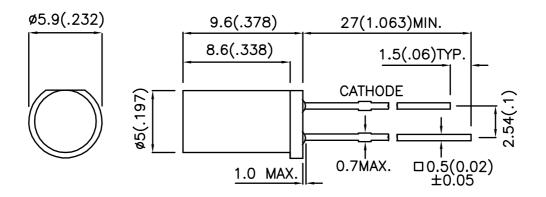


L-483IDT

HIGH EFFICIENCY RED


Features

- •CYLINDRICAL TYPE, TOP DIFFUSED.
- •LOW POWER CONSUMPTION.
- •I.C. COMPATIBLE.
- •RELIABLE AND RUGGED.
- •LONG LIFE SOLID STATE RELIABILITY.
- AVAILABLE ON TAPE AND REEL.
- RoHS COMPLIANT.

Description

The High Efficiency Red source color devices are made with Gallium Arsenide Phosphide on Gallium Phosphide Orange Light Emitting Diode.

Package Dimensions

Notes:

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is ±0.25(0.01") unless otherwise noted.
- Lead spacing is measured where the leads emerge from the package.
 Specifications are subject to change without notice.

SPEC NO: DSAB9600 APPROVED: J. Lu

REV NO: V.4 CHECKED: Allen Liu **DATE: MAR/22/2005** DRAWN: H.Q.YUAN PAGE: 1 OF 3

Kingbright

Selection Guide

Part No.	Dice	Dice Lens Type Iv (mcd) @ 10mA		,	Viewing Angle
			Min.	Тур.	2 θ 1/2
L-483IDT	HIGH EFFICIENCY RED (GaAsP/GaP)	RED DIFFUSED	1.8	5	100°

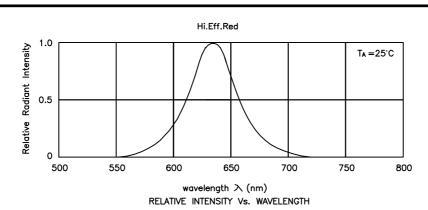
Note:

Electrical / Optical Characteristics at T_A=25°C

Symbol	Parameter	Device	Тур.	Max.	Units	Test Conditions
λpeak	Peak Wavelength	High Efficiency Red	627		nm	IF=20mA
λD	Dominant Wavelength	High Efficiency Red	625		nm	IF=20mA
Δλ1/2	Spectral Line Half-width	High Efficiency Red	45		nm	IF=20mA
С	Capacitance	High Efficiency Red	15		pF	VF=0V;f=1MHz
VF	Forward Voltage	High Efficiency Red	2.0	2.5	V	IF=20mA
IR	Reverse Current	High Efficiency Red		10	uA	VR = 5V

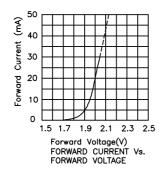
Absolute Maximum Ratings at Ta=25°C

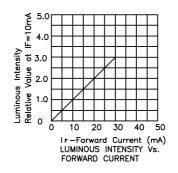
Parameter	High Efficiency Red			
Power dissipation	105			
DC Forward Current	30	mA		
Peak Forward Current [1]	160	mA		
Reverse Voltage	5	V		
Operating/Storage Temperature	-40°C To +85°C	<u>.</u>		
Lead Solder Temperature [2]	er Temperature [2] 260°C For 3 Seconds			
Lead Solder Temperature [3] 260°C For 5 Seconds				

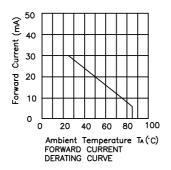

Notes:

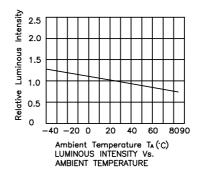
- 1. 1/10 Duty Cycle, 0.1ms Pulse Width.
- 2. 2mm below package base.
- 3. 5mm below package base.

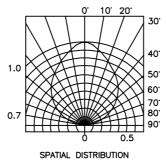
SPEC NO: DSAB9600 REV NO: V.4 DATE: MAR/22/2005 PAGE: 2 OF 3
APPROVED: J. Lu CHECKED: Allen Liu DRAWN: H.Q.YUAN


 $^{1. \}theta^{1/2}$ is the angle from optical centerline where the luminous intensity is 1/2 the optical centerline value.


Kingbright




High Efficiency Red


L-483IDT

Remarks:

If special sorting is required (e.g. binning based on forward voltage, luminous intensity, or wavelength), the typical accuracy of the sorting process is as follows:

- 1. Wavelength: +/-1nm
- 2. Luminous Intensity: +/-15%
- 3. Forward Voltage: +/-0.1V

Note: Accuracy may depend on the sorting parameters.

SPEC NO: DSAB9600 REV NO: V.4 DATE: MAR/22/2005 PAGE: 3 OF 3
APPROVED: J. Lu CHECKED: Allen Liu DRAWN: H.Q.YUAN